An Introduction to System-theoretic Methods for Model Reduction - Part II - Interpolatory Methods

Serkan Gugercin

Department of Mathematics, Virginia Tech
Division of Computational Modeling and Data Analytics, Virginia Tech

ICERM Semester Program - Spring 2020

Model and dimension reduction in uncertain and dynamic systems

January 31, 2020, Providence, RI

Thanks to: NSF, NIOSH, The Simons Foundation, and ICERM

Outline

Linear dynamical systems:

$$\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), \quad \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

- Rational interpolation problem
- Projection-based rational interpolation
- Optimal rational interpolation
 - Optimality in the H₂ norm
 - Iterative Rational Krylov Algorithm
- Data-driven (frequency-domain) rational interpolation
 - Loewner framework
 - Time-domain Loewner: See Peherstorfer's talk this afternoon.
- If time allows:

•
$$\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{N}\mathbf{x}\mathbf{u}(t) + \mathbf{H}(\mathbf{x}\otimes\mathbf{x}) + \mathbf{B}\mathbf{u}(t), \quad \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

• Linear dynamical systems:

$$\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), \quad \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

- Rational interpolation problem
- Projection-based rational interpolation
- Optimal rational interpolation
 - Optimality in the \mathcal{H}_2 norm
 - Iterative Rational Krylov Algorithm
- Data-driven (frequency-domain) rational interpolation
 - Loewner framework
 - Time-domain Loewner: See Peherstorfer's talk this afternoon.
- If time allows:

•
$$\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{N}\mathbf{x}\mathbf{u}(t) + \mathbf{H}(\mathbf{x}\otimes\mathbf{x}) + \mathbf{B}\mathbf{u}(t), \quad \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

Outline

Linear dynamical systems:

$$\mathbf{E} \dot{\mathbf{x}}(t) = \mathbf{A} \mathbf{x}(t) + \mathbf{B} \mathbf{u}(t), \quad \mathbf{y}(t) = \mathbf{C} \mathbf{x}(t)$$

- Rational interpolation problem
- Projection-based rational interpolation
- Optimal rational interpolation
 - Optimality in the \mathcal{H}_2 norm
 - Iterative Rational Krylov Algorithm
- Data-driven (frequency-domain) rational interpolation
 - Loewner framework
 - Time-domain Loewner: See Peherstorfer's talk this afternoon.
- If time allows:

•
$$\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{N}\mathbf{x}\mathbf{u}(t) + \mathbf{H}(\mathbf{x}\otimes\mathbf{x}) + \mathbf{B}\mathbf{u}(t), \quad \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

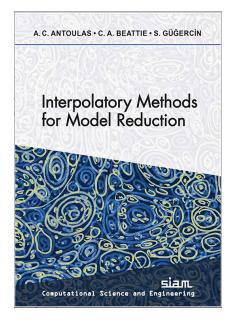
Outline

Linear dynamical systems:

$$\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), \quad \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

- Rational interpolation problem
- Projection-based rational interpolation
- Optimal rational interpolation
 - Optimality in the \mathcal{H}_2 norm
 - Iterative Rational Krylov Algorithm
- Data-driven (frequency-domain) rational interpolation
 - Loewner framework
 - Time-domain Loewner: See Peherstorfer's talk this afternoon.
- If time allows:

$$\bullet \mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{N}\mathbf{x}\mathbf{u}(t) + \mathbf{H}(\mathbf{x}\otimes\mathbf{x}) + \mathbf{B}\mathbf{u}(t), \quad \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$



Indoor-air environment in a conference room

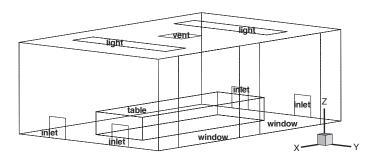


Figure: Geometry for our Indoor-air Simulation:

Example from [Borggaard/Cliff/G., 2011], research under EEBHUB

- Four inlets, one return vent
- Thermal loads: two windows, two overhead lights and occupants
- A FE model for thermal energy transfer with *frozen* velocity field $\overline{\mathbf{v}}$:

$$\frac{\partial T}{\partial t} + \overline{\mathbf{v}} \cdot \nabla T = \frac{1}{\text{RePr}} \Delta T + Bu,$$

$$\implies$$
 $\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), \quad \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$

- $\mathbf{x} \in \mathbb{R}^n$, and $\mathbf{E}, \mathbf{A} \in \mathbb{R}^{n \times n}$ with n = 202140,
- $\mathbf{B} \in \mathbb{R}^{n \times m}$ and $\mathbf{u} \in \mathbb{R}^m$ with m = 2 inputs (forcing)
 - 1 the temperature of the inflow air at all four vents, and
 - a disturbance caused by occupancy around the conference table,
- $\mathbf{C} \in \mathbb{R}^{q \times n}$ and $\mathbf{y} \in \mathbb{R}^q$ with q = 2 outputs (measurements)
 - 1 the temperature at a sensor location on the max x wall,
 - 2 the average temperature in an occupied volume around the table,

$$\mathcal{S}: \qquad \mathbf{u}(t) \longrightarrow \begin{bmatrix} \mathbf{E} \dot{\mathbf{x}}(t) = \mathbf{A} \, \mathbf{x}(t) + \mathbf{B} \, \mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C} \, \mathbf{x}(t) + \mathbf{D} \, \mathbf{u}(t) \end{bmatrix} \longrightarrow \mathbf{y}(t)$$

- A. $\mathbf{E} \in \mathbb{R}^{n \times n}$. $\mathbf{B} \in \mathbb{R}^{n \times m}$. $\mathbf{C} \in \mathbb{R}^{q \times n}$ and $\mathbf{D} \in \mathbb{R}^{q \times m}$
- $\mathbf{x}(t) \in \mathbb{R}^n$: states, $\mathbf{u}(t) \in \mathbb{R}^m$: Input, $\mathbf{y}(t) \in \mathbb{R}^q$: Output
- State-space dimension, n, is quite large
- What is important is the mapping " $\mathbf{u} \mapsto \mathbf{y}$ ", NOT the complete state information $\mathbf{x}(t) \implies \mathsf{Remove}$ the unimportant states.

$$\mathbf{E}(\mathsf{p})\dot{\mathbf{x}}(t;\mathsf{p}) = \mathbf{A}(\mathsf{p})\,\mathbf{x}(t;\mathsf{p}) + \mathbf{B}(\mathsf{p})\,\mathbf{u}(t), \ \ \mathbf{y}(t;\mathsf{p}) = \mathbf{C}(\mathsf{p})\,\mathbf{x}(t;\mathsf{p}), \ \ \mathsf{p} \in \mathbb{C}^{\nu}$$

Linear Dynamical Systems

$$S: \qquad \mathbf{u}(t) \longrightarrow \boxed{ \begin{array}{c} \mathbf{E} \, \dot{\mathbf{x}}(t) = \mathbf{A} \, \mathbf{x}(t) + \mathbf{B} \, \mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C} \, \mathbf{x}(t) + \mathbf{D} \, \mathbf{u}(t) \end{array} } \longrightarrow \mathbf{y}(t)$$

- A. $\mathbf{E} \in \mathbb{R}^{n \times n}$. $\mathbf{B} \in \mathbb{R}^{n \times m}$. $\mathbf{C} \in \mathbb{R}^{q \times n}$ and $\mathbf{D} \in \mathbb{R}^{q \times m}$
- $\mathbf{x}(t) \in \mathbb{R}^n$: states, $\mathbf{u}(t) \in \mathbb{R}^m$: Input, $\mathbf{y}(t) \in \mathbb{R}^q$: Output
- State-space dimension, n, is quite large
- What is important is the mapping " $\mathbf{u} \mapsto \mathbf{y}$ ", NOT the complete state information $\mathbf{x}(t) \implies \mathsf{Remove}$ the unimportant states.

Parametrized linear dynamical systems (see Beattie's talk on Feb 4)

$$\mathbf{E}(\mathsf{p})\,\dot{\mathbf{x}}(t;\mathsf{p}) = \mathbf{A}(\mathsf{p})\,\mathbf{x}(t;\mathsf{p}) + \mathbf{B}(\mathsf{p})\,\mathbf{u}(t),\ \ \mathbf{y}(t;\mathsf{p}) = \mathbf{C}(\mathsf{p})\,\mathbf{x}(t;\mathsf{p}),\ \ \mathsf{p}\in\mathbb{C}^{\nu}$$

$$S_r: \mathbf{u}(t) \longrightarrow \begin{bmatrix} \mathbf{E}_r \, \dot{\mathbf{x}}_r(t) = \mathbf{A}_r \, \mathbf{x}_r(t) + \mathbf{B}_r \, \mathbf{u}(t) \\ \mathbf{y}_r(t) = \mathbf{C}_r \, \mathbf{x}_r(t) + \mathbf{D}_r \, \mathbf{u}(t) \end{bmatrix} \longrightarrow \mathbf{y}_r(t) \approx \mathbf{y}(t)$$

with $\mathbf{A}_r, \mathbf{E}_r \in \mathbb{R}^{r \times r}$, $\mathbf{B}_r \in \mathbb{R}^{r \times m}$, $\mathbf{C}_r \in \mathbb{R}^{q \times r}$, and $\mathbf{D}_r \in \mathbb{R}^{q \times m}$ such that

- $\|\mathbf{y} \mathbf{y}_r\|$ is *small* in an appropriate norm
- Important structural properties of S are preserved
- The procedure is *computationally efficient*.
- For simplicity of notation, assume m = q = 1:

$$\mathbf{B} \to \mathbf{b} \in \mathbb{R}^n, \ \mathbf{C} \to \mathbf{c}^T \in \mathbb{R}^n, \ \text{and, } \mathbf{D} \to d \in \mathbb{R} \implies \mathbf{u}(t), \ \mathbf{y}(t) \in \mathbb{R}$$

Project the dynamics onto r-dimenisonal dimensional subspaces

$$S_r: \mathbf{u}(t) \longrightarrow \begin{bmatrix} \mathbf{E}_r \, \dot{\mathbf{x}}_r(t) = \mathbf{A}_r \, \mathbf{x}_r(t) + \mathbf{B}_r \, \mathbf{u}(t) \\ \mathbf{y}_r(t) = \mathbf{C}_r \, \mathbf{x}_r(t) + \mathbf{D}_r \, \mathbf{u}(t) \end{bmatrix} \longrightarrow \mathbf{y}_r(t) \approx \mathbf{y}(t)$$

with $\mathbf{A}_r, \mathbf{E}_r \in \mathbb{R}^{r \times r}$, $\mathbf{B}_r \in \mathbb{R}^{r \times m}$, $\mathbf{C}_r \in \mathbb{R}^{q \times r}$, and $\mathbf{D}_r \in \mathbb{R}^{q \times m}$ such that

- $\|\mathbf{y} \mathbf{y}_r\|$ is *small* in an appropriate norm
- Important structural properties of S are preserved
- The procedure is *computationally efficient*.
- For simplicity of notation, assume m = q = 1:

$$\mathbf{B} \to \mathbf{b} \in \mathbb{R}^n, \ \mathbf{C} \to \mathbf{c}^T \in \mathbb{R}^n, \ \ \mathsf{and}, \ \ \mathbf{D} \to d \in \mathbb{R} \quad \Longrightarrow \quad \mathbf{u}(t), \ \mathbf{y}(t) \in \mathbb{R}$$

For the MIMO case details, see [Antoulas/Beattie/G.,20].

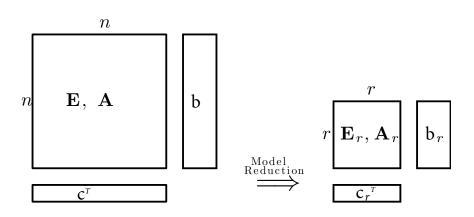


Figure: Projection-based Model Reduction

Model Reduction via Projection

- Choose $V_r = \text{Range}(V_r)$: the r-dimensional right modeling *subspace* (the trial subspace) where $\mathbf{V}_r \in \mathbb{R}^{n \times r}$
- and $W_r = \text{Range}(W_r)$, the r-dimensional left modeling subspace (test subspace) where $\mathbf{W}_r \in \mathbb{R}^{n \times r}$
- Approximate $\mathbf{x}(t) \approx \mathbf{V}_r \mathbf{x}_r(t)$ by forcing $\mathbf{x}_r(t)$ to satisfy

$$\mathbf{W}_r^T (\mathbf{E} \mathbf{V}_r \dot{\mathbf{x}}_r - \mathbf{A} \mathbf{V}_r \mathbf{x}_r - \mathbf{b} \mathbf{u}) = \mathbf{0}$$
 (Petrov-Galerkin)

Leads to a reduced order model:

$$\mathbf{E}_r = \underbrace{\mathbf{W}_r^T \mathbf{E} \mathbf{V}_r}_{r \times r}, \quad \mathbf{A}_r = \underbrace{\mathbf{W}_r^T \mathbf{A} \mathbf{V}_r}_{r \times r}, \quad \mathbf{b}_r = \underbrace{\mathbf{W}_r^T \mathbf{b}}_{r \times 1}, \quad \mathbf{c}_r = \underbrace{\mathbf{V}_r \mathbf{c}}_{q \times r}, \quad d_r = \underbrace{d}_{1 \times 1}$$

•
$$S: u(t) \mapsto y(t) = (Su)(t) = \int_{-\infty}^{t} h(t-\tau)u(\tau)d\tau.$$

- Let $\mathbf{E} = \mathbf{I}$ and d = 0: $h(t) = \mathbf{c}^T e^{\mathbf{A}t} \mathbf{b}$ (impulse response)
- $\mathfrak{H}(s) = \int_0^\infty h(\tau)e^{-s\tau}d\tau = \mathbf{c}^T(s\mathbf{E} \mathbf{A})^{-1}\mathbf{b} + d.$

• Take
$$\mathbf{E} = \mathbf{I}_2$$
, $\mathbf{A} = \begin{bmatrix} -3 & -2 \\ 1 & 0 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $d = 0$.

$$h(t) = e^{-t} - e^{-2t}$$
 \iff $\mathfrak{H}(s) = \frac{1}{s^2 + 3s + 2} = \frac{1}{s+1} + \frac{-1}{s+2}$

•
$$S: u(t) \mapsto y(t) = (Su)(t) = \int_{-\infty}^{t} h(t-\tau)u(\tau)d\tau.$$

- Let $\mathbf{E} = \mathbf{I}$ and d = 0: $h(t) = \mathbf{c}^T e^{\mathbf{A}t} \mathbf{b}$ (impulse response)
- $\mathcal{H}(s) = \int_{0}^{\infty} h(\tau)e^{-s\tau}d\tau = \mathbf{c}^{T}(s\mathbf{E} \mathbf{A})^{-1}\mathbf{b} + d.$

= Transfer function

• Take
$$\mathbf{E} = \mathbf{I}_2$$
, $\mathbf{A} = \begin{bmatrix} -3 & -2 \\ 1 & 0 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $d = 0$.

$$h(t) = e^{-t} - e^{-2t}$$
 \iff $\Re(s) = \frac{1}{s^2 + 3s + 2} = \frac{1}{s+1} + \frac{-1}{s+2}$

- $S: u(t) \mapsto y(t) = (Su)(t) = \int_{-\infty}^{t} h(t-\tau)u(\tau)d\tau.$
- Let $\mathbf{E} = \mathbf{I}$ and d = 0: $h(t) = \mathbf{c}^T e^{\mathbf{A}t} \mathbf{b}$ (impulse response)
- $\mathcal{H}(s) = \int_{0}^{\infty} h(\tau)e^{-s\tau}d\tau = \mathbf{c}^{T}(s\mathbf{E} \mathbf{A})^{-1}\mathbf{b} + d.$ = Transfer function
- Take $\mathbf{E} = \mathbf{I}_2$, $\mathbf{A} = \begin{bmatrix} -3 & -2 \\ 1 & 0 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, d = 0.

$$h(t) = e^{-t} - e^{-2t}$$
 \iff $\mathfrak{H}(s) = \frac{1}{s^2 + 3s + 2} = \frac{1}{s+1} + \frac{-1}{s+2}$

• Let $\hat{y}(\omega) = \mathcal{F}(y(t)), \ \hat{y_r}(\omega) = \mathcal{F}(y_r(t)), \ \text{ and } \ \hat{u}(\omega) = \mathcal{F}(u(t)).$

Full response: $\hat{y}(\omega) = \mathcal{H}(\imath \omega)\hat{u}(\omega)$

Reduced order response: $\hat{y}_r(\omega) = \mathcal{H}_r(\imath\omega)\hat{u}(\omega)$

with transfer functions:

$$\mathcal{H}(s) = \mathbf{c}^T (s\mathbf{E} - \mathbf{A})^{-1} \mathbf{b} + d$$
 and $\mathcal{H}_r(s) = \mathbf{c}_r (s\mathbf{E}_r - \mathbf{A}_r)^{-1} \mathbf{b}_r + d_r$
 $y(t) \approx y_r(t) \iff h(t) \approx h_r(t) \iff \mathcal{H}(s) \approx \mathcal{H}_r(s)$

$$h(t) = \sum_{i=1}^{n} \psi_i e^{\nu_i t} \quad \Longleftrightarrow \quad \mathfrak{H}(s) = \frac{\alpha_0 s^n + \alpha_1 s^{n-1} + \dots + \alpha_n}{s^n + \beta_1 s^{n-1} + \dots + \beta_n}$$

$$h_r(t) = \sum_{i=1}^r \phi_j e^{\lambda_j t} \quad \Longleftrightarrow \quad \mathfrak{H}_r(s) = \frac{\hat{\alpha}_0 s^r + \hat{\alpha}_1 s^{r-1} + \dots + \hat{\alpha}_r}{s^r + \hat{\beta}_1 s^{r-1} + \dots + \hat{\beta}_r}$$

Intro LinSys H2Opt DataDriven Conclusions - Part 1 Settings Proj Meas Intrplt

Frequency Domain Plots

- We will illustrate the error mostly in the frequency domain.
- Amplitude Bode Plot: Draw $\|\mathcal{H}(\imath\omega\|_2 \text{ vs } \omega \in \mathbb{R}.$
- For the previous dynamical systems, we obtain the following:

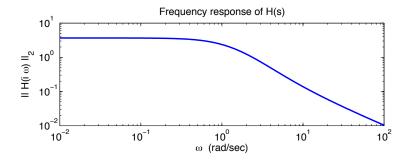


Figure: Frequency Response of $\mathcal{H}(s)$

Error measure: \mathcal{H}_2 Norm

- L_2 norm of h(t) in time domain.
- $2-\infty$ induced norm of S (when m=1 and/or q=1:)

$$\|\mathcal{H}\|_{\mathcal{H}_2} = \|h\|_{L_2} = \|\mathcal{S}\|_{2,\infty} = \sup_{u \neq 0} \frac{\|y\|_{L_\infty}}{\|u\|_{L_2}}$$

In general (for MIMO systems)

$$\|\mathbf{\mathcal{H}}\|_{\mathcal{H}_{2}} = \left(\int_{0}^{\infty} \|\mathbf{h}(t)\|_{F}^{2} dt\right)^{\frac{1}{2}} = \left(\frac{1}{2\pi} \int_{-\infty}^{+\infty} \|\mathbf{\mathcal{H}}(\imath\omega)\|_{F}^{2} d\omega\right)^{\frac{1}{2}}$$

$$\|\mathbf{y} - \mathbf{y}_r\|_{L_{\infty}} \leq \|\mathbf{\mathcal{H}} - \mathbf{\mathcal{H}}_r\|_{\mathcal{H}_2} \|\mathbf{u}\|_{L_2}$$

How to compute the \mathcal{H}_2 norm:

- To have $\|\mathcal{S}\|_{\mathcal{H}_2} < \infty$, we need $d = \mathbf{0}$.
- Given $\mathcal{H}(s) = \mathbf{c}^T (s\mathbf{E} \mathbf{A})^{-1}\mathbf{b}$, let **P** be the unique solution to

$$\mathbf{A}\mathbf{P}\mathbf{E}^T + \mathbf{E}^T\mathbf{P}\mathbf{A} + \mathbf{b}\mathbf{b}^T = \mathbf{0}.$$

Then.

$$\|\mathcal{S}\|_{\mathcal{H}_2} = \sqrt{\mathbf{c}^T \, \mathbf{P} \, \mathbf{c}}$$

- Directly follows from the definition.
- Matlab commands: norm (S, 2), normh2 (S), h2norm (S),

Error measure: \mathcal{H}_{∞} Norm

2-2 induced norm of S:

$$\|\mathcal{S}\|_{\mathcal{H}_{\infty}} = \sup_{u \neq 0} \frac{\|y\|_2}{\|u\|_2} = \sup_{u \neq 0} \frac{\|\mathcal{S}u\|_2}{\|u\|_2} = \sup_{w \in \mathbb{R}} \|\mathcal{H}(\imath w)\|_2$$

• $\|S - S_r\|_{\mathcal{H}_{-r}}$ = Worst output error $\|y(t) - y_r(t)\|_2$ for $\|u\|_2 = 1$.

$$\|y - y_r\|_{L_2} \le \|\mathcal{H} - \mathcal{H}_r\|_{\mathcal{H}_{\infty}} \|u\|_{L_2}$$

ntro LinSys H2Opt DataDriven Conclusions - Part 1

How to compute the \mathcal{H}_{∞} norm:

- Let d=0
- $\|S S_r\|_{\mathcal{H}_{\infty}} \le \gamma$ if and only if the matrix pencil

$$\lambda \begin{bmatrix} \mathbf{E} & \mathbf{0} \\ \mathbf{0} & \mathbf{E}^T \end{bmatrix} - \begin{bmatrix} \mathbf{A} & \frac{1}{\gamma} \mathbf{b} \mathbf{b}^T \\ -\frac{1}{\gamma} \mathbf{c} \mathbf{c}^T & -\mathbf{A}^T \end{bmatrix}$$

has no purely imaginary eigenvalues.

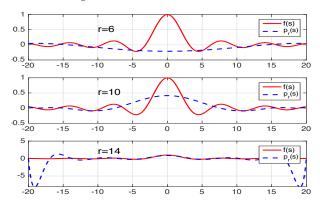
- Computationally intensive: [Boyd/Balakrishnan,1990],
 [Boyd/Balakrishnan/Kabamba,1989], [Bruinsma/Steinbuch,1990],
 [Benner/Byers/Mehrmann/Xu,1999], [Benner/Voigt, 2012], [Benner/Voigt, 2012],
 [Aliyev et al., 2017],
- Matlab commands: norm (S, inf), norminf (S), hinfnorm (S),

Interpolating f(s)

• Given the interpolation nodes $\{s_i\}_{i=0}^r$, find $p_r(s)$ such that

$$f(s_i) = p_r(s_i)$$
 for $i = 0, \dots, r$.

• Consider $f(s) = \frac{\sin s}{c}$ for $s \in [-20, 20]$. Use linearly spaced nodes:



Interpolating f(s)

• $f(s) = \frac{\sin s}{s}$ for $s \in [-20, 20]$. Use Chebyshev nodes:



Model Reduction by Rational Interpolation

• Given a transfer function $\mathcal{H}(s) = \mathbf{c}^T (s\mathbf{E} - \mathbf{A})^{-1} \mathbf{b}$ together with

interpolation points: interpolation points:
$$\{\mu_i\}_{i=1}^r\subset\mathbb{C}, \{\sigma_j\}_{j=1}^r\subset\mathbb{C}$$

• Find a reduced model $\mathcal{H}_r(s) = \mathbf{c}_r^T (s\mathbf{E}_r - \mathbf{A}_r)^{-1} \mathbf{b}_r$, that is a rational interpolant to $\mathcal{H}(s)$:

$$\mathcal{H}_r(\mu_i) = \mathcal{H}(\mu_i)$$
 and $\mathcal{H}_r(\sigma_j) = \mathcal{H}(\sigma_j)$ for $i = 1, \dots, r$,

Interpolatory Model Reduction via Projection

• Given $\{\sigma_i\}_{i=1}^r$ and $\{\mu_i\}_{i=1}^r$, set

$$\mathbf{V}_r = \left[(\sigma_1 \mathbf{E} - \mathbf{A})^{-1} \mathbf{b}, \ \cdots, \ (\sigma_r \mathbf{E} - \mathbf{A})^{-1} \mathbf{b} \right] \in \mathbb{C}^{n \times r} \text{ and }$$

$$\mathbf{W}_r = \left[(\mu_1 \mathbf{E}^T - \mathbf{A}^T)^{-1} \mathbf{c} \ \cdots \ (\mu_r \mathbf{E}^T - \mathbf{A}^T)^{-1} \mathbf{c} \ \right] \in \mathbb{C}^{n \times r}$$

• Obtain $\mathcal{H}_r(s)$ via projection as before

$$\mathbf{E}_r = \mathbf{W}_r^T \mathbf{E} \mathbf{V}_r \quad \mathbf{A}_r = \mathbf{W}_r^T \mathbf{A} \mathbf{V}_r, \quad \mathbf{b}_r = \mathbf{W}_r^T \mathbf{b}, \quad \mathbf{c}_r = \mathbf{V}_r^T \mathbf{c}, \quad d_r = d.$$

Then

$$\mathcal{H}(\sigma_j) = \mathcal{H}_r(\sigma_j), \qquad \text{for } j = 1, \dots, r, \\ \mathcal{H}(\mu_i) = \mathcal{H}_r(\mu_i), \qquad \text{for } i = 1, \dots, r, \\ \mathcal{H}'(\sigma_k) = \mathcal{H}'_r(\sigma_k) \qquad \text{if } \sigma_k = \mu_k$$

[Skelton et. al., 87], [Feldmann/Freund, 95], [Grimme, 97]

• Let $V_r = \text{Ran}(\mathbf{V}_r)$ and $W_r = \text{Ran}(\mathbf{W}_r)$. Define

$$\mathbf{\mathcal{P}}_r(z) = \mathbf{V}_r(z\mathbf{E}_r - \mathbf{A}_r)^{-1}\mathbf{W}_r^T(z\mathbf{E} - \mathbf{A})$$

• $\mathcal{P}_r^2(z) = \mathcal{P}_r(z)$ with $\mathcal{V}_r = \text{Ran}(\mathcal{P}_r(z))$

$$\begin{aligned} \mathfrak{H}(\sigma_k) - \mathfrak{H}_r(\sigma_k) &= \mathbf{c}^T (\sigma_k \mathbf{E} - \mathbf{A})^{-1} \mathbf{b} - \mathbf{c}_r^T (\sigma_k \mathbf{E}_r - \mathbf{A}_r)^{-1} \mathbf{b}_r \\ &= & \mathbf{c}^T (\sigma_k \mathbf{E} - \mathbf{A})^{-1} \left(\mathbf{I} - \mathbf{Q}_r(\sigma_k) \right) (\sigma_k \mathbf{E} - \mathbf{A}) \left(\mathbf{I} - \mathbf{P}_r(\sigma_k) \right) (\sigma_k \mathbf{E} - \mathbf{A})^{-1} \mathbf{b} \end{aligned}$$

• Since $\mathbf{v} = (\sigma_k \mathbf{E} - \mathbf{A})^{-1} \mathbf{b} \in \mathsf{Ran}(\mathbf{V}_r) = \mathsf{Ran}(\mathcal{P}_r(z))$:

$$(\mathbf{I} - \mathbf{P}_r(\sigma_k))(\sigma_k \mathbf{E} - \mathbf{A})^{-1} \mathbf{b} = (\mathbf{I} - \mathbf{P}_r(\sigma_k)) \mathbf{v} = \mathbf{v} - \mathbf{P}_r(\sigma_k) \mathbf{v} = \mathbf{v} - \mathbf{v} = 0.$$

$$\implies \mathbf{\mathcal{H}}(\sigma_k) = \mathbf{\mathcal{H}}_r(\sigma_k)$$

Interpolation Proof:

- Analogously define $\mathbf{Q}_r(z) = (z\mathbf{E} \mathbf{A})\mathbf{V}_r(z\mathbf{E}_r \mathbf{A}_r)^{-1}\mathbf{W}_r^T$
- $\Omega_r^2(z) = \Omega_r(z)$ with $W_r^{\perp} = \text{Ker}(\Omega_r(z)) = \text{Ran}(\mathbf{I} \Omega_r(z))$. Then, $\mathcal{H}(z) - \mathcal{H}_r(z) = \mathbf{c}^T (z\mathbf{E} - \mathbf{A})^{-1} \left(\mathbf{I} - \mathbf{Q}_r(z) \right) (z\mathbf{E} - \mathbf{A}) \left(\mathbf{I} - \mathbf{P}_r(z) \right) (z\mathbf{I} - \mathbf{A})^{-1} \mathbf{b}$
- Evaluate at $z = \mu_k$ to obtain: $\mathcal{H}(\mu_k) = \mathcal{H}_r(\mu_k)$
- Evaluate at $z = \sigma + \varepsilon$:

$$\mathcal{H}(\sigma_i + \varepsilon) - \mathcal{H}_r(\sigma_i + \varepsilon) = \mathcal{O}(\varepsilon^2).$$

Since $\mathcal{H}(\sigma_i) = \mathcal{H}_r(\sigma_i)$,

$$\frac{1}{\varepsilon} \left(\mathcal{H}(\sigma_i + \varepsilon) - \mathcal{H}(\sigma_i) \right) - \frac{1}{\varepsilon} \left(\mathcal{H}_r(\sigma_i + \varepsilon) - \mathcal{H}_r(\sigma_i) \right) \to 0, \text{ as } \varepsilon \to 0.$$

Reduction from n=2 to r=1 ©

Recall the simple example

$$\mathbf{E} = \mathbf{I}_2, \ \mathbf{A} = \begin{bmatrix} -3 & -2 \\ 1 & 0 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \mathbf{c} = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

•
$$\mathcal{H}(s) = \mathbf{c}^T (s\mathbf{E} - \mathbf{A})^{-1} \mathbf{b} = \frac{1}{s^2 + 3s + 2}$$

- Choose $\sigma_1 = \mu_1 = 0$.
- $\mathbf{V}_r = (\sigma_1 \mathbf{E} \mathbf{A})^{-1} \mathbf{b} = \begin{bmatrix} 0 \\ 0.5 \end{bmatrix}$ $\mathbf{W}_r = (\mu_1 \mathbf{E} \mathbf{A})^{-T} \mathbf{c} = \begin{bmatrix} 0.5 \\ 1.5 \end{bmatrix}$

$$\mathbf{W}_r = (\boldsymbol{\mu}_1 \mathbf{E} - \mathbf{A})^{-T} \mathbf{c} = \begin{bmatrix} 0.5 \\ 1.5 \end{bmatrix}$$

•
$$\mathcal{H}(s) = \mathbf{c}^T (s\mathbf{E} - \mathbf{A})^{-1}\mathbf{b} = \frac{1}{s^2 + 3s + 2}$$

•
$$\mathbf{E}_r = \mathbf{W}_r^T \mathbf{E} \mathbf{V}_r = 0.75$$
, $\mathbf{A}_r = \mathbf{W}_r^T \mathbf{A} \mathbf{V}_r = -0.5$,

$$\bullet \mathbf{b}_r = \mathbf{W}_r^T \mathbf{b} = 0.5, \qquad \mathbf{c}_r = \mathbf{V}_r^T \mathbf{c} = 0.5,$$

•
$$\mathbf{\mathcal{H}}_r(s) = \mathbf{c}_r^T (s\mathbf{E}_r - \mathbf{A}_r)^{-1} \mathbf{b}_r = \frac{\frac{1}{3}}{s + \frac{2}{3}}$$

$$\bullet \ \mathcal{H}(\sigma_1) = \mathcal{H}(0) = \mathcal{H}_r(0) = 0.5 \qquad \checkmark$$

•
$$\mathcal{H}'(\sigma_1) = \mathcal{H}'_r(0) = -0.75$$

• Let
$$\mathbf{E} = \mathbf{I}$$
 \Rightarrow $\mathbf{V}_r = \left[(\sigma_1 \mathbf{I} - \mathbf{A})^{-1} \mathbf{b}, \cdots, (\sigma_r \mathbf{I} - \mathbf{A})^{-1} \mathbf{b} \right]$

• Then V_r solves

$$\mathbf{V}_r \Sigma - \mathbf{A} \mathbf{V}_r = \mathbf{b} \mathbf{e}^T,$$
 where $\Sigma = \mathrm{diag}(\sigma_1, \dots, \sigma_r)$ and $\mathbf{e} = [1, 1, \dots, 1]^T.$

• Similarly, W_r solves

$$\mathbf{W}_r\mathbf{M}-\mathbf{A}^T\mathbf{W}_r=\mathbf{c}\mathbf{e}^T$$
 where $\mathbf{M}=\mathrm{diag}(\mu_1,\ldots,\mu_r)$

Higher-order Interpolation

Theorem

Let $\sigma \in \mathbb{C}$ be such that both $\sigma \mathbf{E} - \mathbf{A}$ and $\sigma \mathbf{E}_r - \mathbf{A}_r$ are invertible.

(a) if
$$\left((\sigma \mathbf{E} - \mathbf{A})^{-1} \mathbf{E}\right)^{j-1} (\sigma \mathbf{E} - \mathbf{A})^{-1} \mathbf{b} \in \mathsf{Ran}(\mathbf{V}_r) \text{ for } j = 1,.,N$$

then $\mathfrak{H}^{(\ell)}(\sigma) = \mathfrak{H}^{(\ell)}_r(\sigma)$ for $\ell = 0,1,\ldots,N-1$

(b) if
$$\left(\left(\mu \mathbf{E} - \mathbf{A}\right)^{-T} \mathbf{E}^{T}\right)^{j-1} \left(\mu \mathbf{E} - \mathbf{A}\right)^{-T} \mathbf{c} \in \mathsf{Ran}(\mathbf{W}_{r}) \text{ for } j = 1,..,M,$$

then
$$\mathbf{\mathcal{H}}^{(\ell)}(\mu) = \mathbf{\mathcal{H}}_r^{(\ell)}(\mu)$$
 for $\ell = 0, 1, \dots, M-1;$

(c) if both (a) and (b) hold, and if $\sigma = \mu$,

then
$$\mathfrak{H}^{(\ell)}(\sigma) = \mathfrak{H}_r^{(\ell)}(\sigma)$$
, for $\ell = 1, \dots, M+N+1$

Proof follows similarly.

How to construct interpolants with $d_r \neq d$

•
$$\mathcal{H}(s) = \mathbf{c}^T (s\mathbf{E} - \mathbf{A})^{-1} \mathbf{b}$$
 $\mathcal{H}_r(s) = \mathbf{c}_r^T (s\mathbf{E}_r - \mathbf{A}_r)^{-1} \mathbf{b}_r + d_r$

Theorem ([Beattie/G.,09] [Mayo/Antoulas,07])

Given
$$\{\mu_i\}_{i=1}^r \cup \{\sigma_j\}_{j=1}^r$$
, let $\mathbf{V}_r \in \mathbb{C}^{n \times r}$ and $\mathbf{W}_r \in \mathbb{C}^{n \times r}$ be as before. Let

$$\mathbf{e} = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^T$$
. For any $d_r \in \mathbb{C}$, define

$$\mathbf{E}_r(s) = \mathbf{W}_r^T \mathbf{E} \mathbf{V}_r, \quad \mathbf{A}_r = \mathbf{W}_r^T \mathbf{A} \mathbf{V}_r + d_r \mathbf{e} \mathbf{e}^T,$$

$$\mathbf{b}_r = \mathbf{W}_r^T \mathbf{b} - d_r \mathbf{e}, \quad \text{and} \quad \mathbf{c}_r = \mathbf{V}_r^T \mathbf{c}_r - d_r \mathbf{e}.$$

Then with
$$\mathbf{\mathcal{H}}_r(s) = \mathbf{c}_r^T (s\mathbf{E}_r - \mathbf{A}_r)^{-1}\mathbf{b}_r + d_r$$
, we have

$$\mathfrak{H}(\sigma_i) = \mathfrak{H}_r(\sigma_i)$$
 and $\mathfrak{H}(\mu_i) = \mathfrak{H}_r(\mu_i)$ for $i = 1, ..., r$.

d_r can be chosen to meet certain requirements.

\mathcal{H}_2 Space: The SISO Case

• \mathcal{H}_2 : Set of scalar-valued functions, $\mathcal{H}(z)$, with components that are analytic for z in the open right half plane, Re(z) > 0, such that

$$\sup_{x>0} \int_{-\infty}^{\infty} | \mathcal{H}(x+iy) |^2 dy < \infty.$$

- \mathcal{H}_2 is a Hilbert space and transfer functions associated with stable finite dimensional dynamical systems are elements of \mathcal{H}_2 .
- For stable G(s) and $\mathcal{H}(s)$:

$$\langle \mathbf{G}, \ \mathbf{\mathcal{H}} \rangle_{\mathcal{H}_2} \stackrel{\text{def}}{=} \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{\mathbf{G}(\imath\omega)} \mathbf{\mathcal{H}}(\imath\omega) \, d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{G}(-\imath\omega) \mathbf{\mathcal{H}}(\imath\omega) d\omega$$

with a norm defined as

$$\|\mathbf{G}\|_{\mathcal{H}_2} = \sqrt{\langle \mathbf{G}, \mathbf{G} \rangle_{\mathcal{H}_2}} \stackrel{\text{def}}{=} \left(\frac{1}{2\pi} \int_{-\infty}^{+\infty} |\mathbf{G}(\imath\omega)|^2 d\omega \right)^{1/2}.$$

- For simplicity, we assume $\mathcal{H}_r(s)$ has simple poles; the theory applies to the general case.
- Pole-residue expansion of $\mathcal{H}_r(s)$ of dimension-r:

$$\mathcal{H}_r(s) = \mathbf{c}_r^T (s\mathbf{E}_r - \mathbf{A}_r)^{-1} \mathbf{b}_r = \sum_{i=1}^r \frac{\phi_i}{s - \lambda_i},$$

 $\lambda_i \in \mathbb{C}_-, \ \phi_i \in \mathbb{C} \ \text{for } i = 1, \dots, r.$ where

Note that

$$\mathcal{H}_r(s) \in \operatorname{Span}\left\{\frac{1}{s-\lambda_1}, \frac{1}{s-\lambda_2}, \ldots, \frac{1}{s-\lambda_r}\right\}$$

Suppose that $\mathbf{G}(s)$ and $\mathbf{H}(s) = \sum_{i=1}^r \frac{\varphi_i}{s - \xi_i}$ are real, stable and suppose that $\mathfrak{H}(s)$ has simple poles at $\xi_1, \, \xi_2, \, \dots \, \xi_r$. Then

$$\langle \mathbf{G}, \mathcal{H} \rangle_{\mathcal{H}_2} = \sum_{k=1}^r \varphi_k \mathbf{G}(-\xi_k) \text{ and } \|\mathcal{H}\|_{\mathcal{H}_2} = \left(\sum_{k=1}^r \varphi_k \mathcal{H}(-\xi_k)\right)^{1/2}.$$

Proof: Application of the Residue Theorem:

$$\langle \mathbf{G}, \, \mathcal{H} \rangle_{\mathcal{H}_2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{G}(-\imath \omega) \mathcal{H}(\imath \omega) \, d\omega = \lim_{R \to \infty} \frac{1}{2\pi \imath} \int_{\Gamma_R} \mathbf{G}(-s) \mathcal{H}(s) \, ds$$

where

$$\Gamma_R = \{z \, | z = \imath \omega ext{ with } \omega \in [-R,R] \,\} \cup \left\{z \, \left| z = R \, e^{\imath heta} ext{ with } heta \in [rac{\pi}{2},rac{3\pi}{2}] \,
ight\}.$$

LinSys H2Opt DataDriven Conclusions - Part 1

Pole-residue based \mathcal{H}_2 error expression

Theorem

Given a full-order real system, $\Re (s)$ and a reduced model, $\Re (s)$, having the form $\Re (s) = \sum_{i=1}^r \frac{\phi_i}{s-\lambda_i}$, the $\Re (s)$ norm of the error system is given by

$$\|\mathbf{\mathcal{H}} - \mathbf{\mathcal{H}}_r\|_{\mathcal{H}_2}^2 = \|\mathbf{\mathcal{H}}\|_{\mathcal{H}_2}^2 - 2\sum_{k=1}^r \phi_k \mathbf{\mathcal{H}}(-\lambda_k) + \sum_{k,\ell=1}^r \frac{\phi_k \phi_\ell}{-\lambda_k - \lambda_\ell}$$

- SISO Case: [Krajewski et al.,1995], [G./Antoulas,2003]
- MIMO Case: [Beattie/G.,2008],
- Can be used in developing descent-type H₂ optimal model reduction algorithms [Beattie/G.,2009]

Optimal \mathcal{H}_2 approximation

Problem

Given
$$\mathfrak{H}(s)$$
, find $\mathfrak{H}_r(s)$ of order r which solves: $\min_{degree(\mathbf{G}_r)=r} \|\mathbf{\mathcal{H}} - \mathbf{G}_r\|_{\mathcal{H}_2}$.

- The goal is to minimize $\max_{t\geq 0} ||y(t)-y_r(t)||_{\infty}$ for all possible unit energy inputs.
- Non-convex optimization problem. Finding a global minimum is, at best, a formidable task.
- [Wilson,1970], [Hyland/Bernstein,1985]: Sylvester-equation based optimality conditions
- Wilson [1970]: Solution is obtained by projection. But, is it an interpolatory projection?

$$\mathcal{H}_r(s) = \mathbf{c}_r^T (s\mathbf{E}_r - \mathbf{A}_r)^{-1} \mathbf{b}_r = \sum_{i=1}^r \frac{\phi_i}{s - \lambda_i} \iff \mathbf{h}_r(t) = \sum_{i=1}^r \phi_i e^{\lambda_i t}$$

where

$$\lambda_i \in \mathbb{C}_-$$
 and $\phi_i \in \mathbb{C}$ for $i = 1, \dots, r$.

- For simplicity, we assume $\mathcal{H}_r(s)$ has simple poles; the theory applies to the general case.
- So, where is the interpolation connection?

$$\mathcal{H}_r(s) = \mathbf{c}_r^T (s\mathbf{E}_r - \mathbf{A}_r)^{-1} \mathbf{b}_r = \sum_{i=1}^r \frac{\phi_i}{s - \lambda_i} \iff \mathbf{h}_r(t) = \sum_{i=1}^r \phi_i e^{\lambda_i t}$$

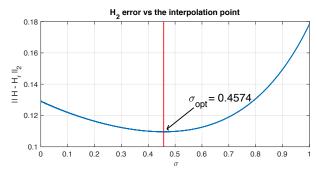
where

$$\lambda_i \in \mathbb{C}_-$$
 and $\phi_i \in \mathbb{C}$ for $i = 1, \dots, r$.

- For simplicity, we assume $\mathcal{H}_r(s)$ has simple poles; the theory applies to the general case.
- So, where is the interpolation connection?

Searching for the optimal interpolation point

• Vary σ from $\sigma = 0$ to $\sigma = 1$ and measure the \mathcal{H}_2 error:

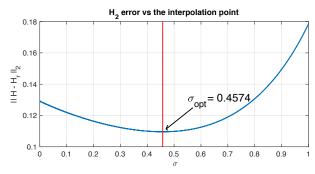


• Compute the reduced model for $\sigma_{opt} = 0.4574$, i.e., $\mathbf{V}_r = (\sigma_{ont}\mathbf{E} - \mathbf{A})^{-1}\mathbf{b}$ and $\mathbf{W}_r = (\sigma_{ont}\mathbf{E} - \mathbf{A})^{-T}\mathbf{c}$:

$$\mathcal{H}_r^{(opt)}(s) = \frac{0.2554}{s + 0.4574} \iff h_r^{(opt)}(t) = 0.2554 e^{-0.4574}$$

Searching for the optimal interpolation point

• Vary σ from $\sigma = 0$ to $\sigma = 1$ and measure the \mathcal{H}_2 error:

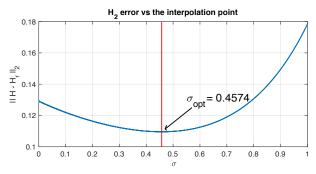


• Compute the reduced model for $\sigma_{opt} = 0.4574$, i.e., $\mathbf{V}_r = (\sigma_{ont}\mathbf{E} - \mathbf{A})^{-1}\mathbf{b}$ and $\mathbf{W}_r = (\sigma_{ont}\mathbf{E} - \mathbf{A})^{-T}\mathbf{c}$:

$$\mathcal{H}_r^{(opt)}(s) = \frac{0.2554}{s + 0.4574} \iff h_r^{(opt)}(t) = 0.2554 e^{-0.4574}$$

Searching for the optimal interpolation point

• Vary σ from $\sigma = 0$ to $\sigma = 1$ and measure the \mathcal{H}_2 error:



• Compute the reduced model for $\sigma_{opt} = 0.4574$, i.e., $\mathbf{V}_r = (\sigma_{ont}\mathbf{E} - \mathbf{A})^{-1}\mathbf{b}$ and $\mathbf{W}_r = (\sigma_{ont}\mathbf{E} - \mathbf{A})^{-T}\mathbf{c}$:

$$\mathcal{H}_r^{(opt)}(s) = \frac{0.2554}{s + 0.4574} \iff h_r^{(opt)}(t) = 0.2554 \ e^{-0.4574 t}$$

Interpolatory \mathcal{H}_2 optimality conditions

Theorem ([Meier /Luenberger,67], [G./Antoulas/Beattie,08])

Given $\mathfrak{H}(s)$, let $\mathfrak{H}_r(s) = \sum_{i=1}^r \frac{\phi_i}{s - \lambda_i}$ be the best r^{th} order rational approximation of $\mathfrak{H}(s)$ with respect to the \mathcal{H}_2 norm. Then,

$$\mathfrak{H}(-\lambda_k) = \mathfrak{H}_r(-\lambda_k)$$
 and $\mathfrak{H}'(-\lambda_k) = \mathfrak{H}'_r(-\lambda_k)$ for $k = 1, 2, ..., r$.

- Hermite interpolation for H₂ optimality
- Optimal interpolation points : $\sigma_i = -\lambda_i$
- $\mathfrak{H}(-\lambda_k) = \mathfrak{H}_r(-\lambda_k)$ necessary and sufficient if λ_k are fixed.

Proof:

•
$$\mathcal{J} = \|\mathcal{H} - \mathcal{H}_r\|_{\mathcal{H}_2}^2 = \|\mathcal{H}\|_{\mathcal{H}_2}^2 - 2\sum_{k=1}^r \phi_k \mathcal{H}(-\lambda_k) + \sum_{k,\ell=1}^r \frac{\phi_k \phi_\ell}{-\lambda_k - \lambda_\ell}$$

Set the gradient to zero:

$$\begin{split} \frac{\partial \mathcal{J}}{\partial \phi_i} &= 2(\mathcal{H}_r(-\lambda_i) - \mathcal{H}(-\lambda_i)) = 0\\ \frac{\partial \mathcal{J}}{\partial \lambda_i} &= 2\phi_i(\mathcal{H}_r'(-\lambda_i) - \mathcal{H}'(-\lambda_i)) = 0 \end{split}$$

Another interpretation

$$\begin{split} \langle \mathbf{\mathcal{H}} - \mathbf{\mathcal{H}}_r, \frac{1}{s - \lambda_i} \rangle &= 0 \quad \Longrightarrow \quad \mathbf{\mathcal{H}}(-\lambda_i) = \mathbf{\mathcal{H}}_r(-\lambda_i) \\ \langle \mathbf{\mathcal{H}} - \mathbf{\mathcal{H}}_r, \frac{1}{(s - \lambda_i)^2} \rangle &= 0 \quad \Longrightarrow \quad \mathbf{\mathcal{H}}'(-\lambda_i) = \mathbf{\mathcal{H}}'_r(-\lambda_i) \end{split}$$

• λ_i, ϕ_i are NOT known a priori \Longrightarrow Need iterative steps

An Iterative Rational Krylov Algorithm (IRKA):

Algorithm (G./Antoulas/Beattie [2008])

- **1** Choose $\{\sigma_1, \ldots, \sigma_r\}$
- $\mathbf{v}_r = \left[(\sigma_1 \mathbf{E} \mathbf{A})^{-1} \mathbf{b}, \ (\sigma_2 \mathbf{E} \mathbf{A})^{-1} \mathbf{b}, \ \cdots, \ (\sigma_r \mathbf{E} \mathbf{A})^{-1} \mathbf{b} \right]$
- $\mathbf{W}_r = [(\sigma_1 \mathbf{E}^T \mathbf{A}^T)^{-1} \mathbf{c}, (\sigma_2 \mathbf{E}^T \mathbf{A}^T)^{-1} \mathbf{c}, \cdots, (\sigma_r \mathbf{E}^T \mathbf{A}^T)^{-1} \mathbf{c}].$
- while (not converged)
 - $\mathbf{A}_r = \mathbf{W}_r^T \mathbf{A} \mathbf{V}_r, \mathbf{E}_r = \mathbf{W}_r^T \mathbf{E} \mathbf{V}_r$
 - \circ $\sigma_i \longleftarrow -\lambda_i(\mathbf{A}_r, \mathbf{E}_r)$.

$$\mathbf{W}_r = \left[(\sigma_1 \mathbf{E}^T - \mathbf{A}^T)^{-1} \mathbf{c}, \ (\sigma_2 \mathbf{E}^T - \mathbf{A}^T)^{-1} \mathbf{c}, \cdots, \ (\sigma_r \mathbf{E}^T - \mathbf{A}^T)^{-1} \mathbf{c} \right].$$

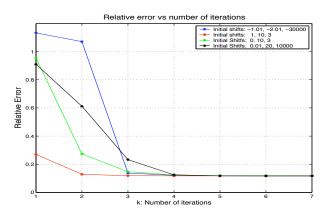
- $\mathbf{A}_r = \mathbf{W}_r^T \mathbf{A} \mathbf{V}_r$, $\mathbf{E}_r = \mathbf{W}_r^T \mathbf{E} \mathbf{V}_r$, $\mathbf{b}_r = \mathbf{W}_r^T \mathbf{b}$, $\mathbf{c}_r = \mathbf{V}_r^T \mathbf{c}$, and $d_r = d$.
 - Locally optimal reduced model upon convergence. Also,

$$\mathbf{V}_r(-\Lambda) - \mathbf{A}\mathbf{V}_r = \mathbf{b}\mathbf{e}^T$$
 and $\mathbf{W}_r(-\Lambda) - \mathbf{A}^T\mathbf{W}_r = \mathbf{c}\mathbf{e}^T$

- In its simplest form, IRKA is a fixed point iteration. Guaranteed convergence for state-space symmetric systems [Flagg/Beattie/G.,2012]
- Newton formulation is possible [G./Antoulas/Beattie,08]
- Globally convergent descent [Beattie/G.,2009]
- Extensions
 - Structure-preservation (such as port-Hamiltonian structure):
 [G./Polygua/Beattie/vanderSchaft,2012], [Wyatt, 2012]
 - Data-driven implementation: [Beattie/G.,2012]
 - Extensions to \mathcal{H}_{∞} model reduction: [Flagg, Beattie/G.,2013]
 - Nonlinear Systems: [Benner/Breiten,2012], [Flagg/G., 2014], [Benner/Goyal/G./,2017]
 - Projected nonlinear LS framework: [Hokanson/Magruder, 2018]
- Implementation with iterative solves:
 - [Ahuja/deSturler/G./Chang, 2012], [Beattie/G./Wyatt, 2012], [Ahmad/Szyld/van Gijzen, 2017]

Small example:

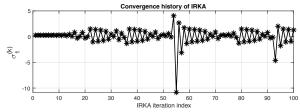
•
$$\Re(s) = \frac{2s^6 + 11.5s^5 + 57.75s^4 + 178.625s^3 + 345.5s^2 + 323.625s + 94.5}{s^7 + 10s^6 + 46s^5 + 130s^4 + 239s^3 + 280s^2 + 194s + 60}$$

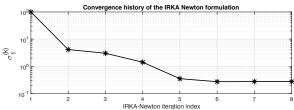


Fixed point vs Newton framework

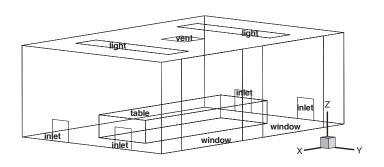
•
$$\Re(s) = \frac{-s^2 + (7/4)s + (5/4)}{s^3 + 2s^2 + (17/16)s + (15/32)}, \, \Re_{\text{opt}}(s) = \frac{0.97197}{s + 0.27272}$$

•
$$\frac{\partial \widetilde{\lambda}}{\partial \sigma} \approx 1.3728 > 1$$





Indoor-air environment in a conference room



$$\mathbf{E}\,\dot{\mathbf{x}}(t) = \mathbf{A}\,\mathbf{x}(t) + \mathbf{B}\,\mathbf{u}(t), \quad \mathbf{y}(t) = \mathbf{C}\,\mathbf{x}(t),$$

- Example from [Borggaard/Cliff/G., 2011],
- Recall n = 202140, m = 2 and p = 2
- Reduced the order to r = 30 using IRKA.

	From Input [1]	From Input [2]
To Output [1]	6.62×10^{-3}	1.82×10^{-5}
To Output [2]	4.86×10^{-4}	5.40×10^{-7}

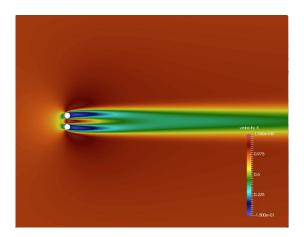
• Does IRKA pay off? How about some ad hoc selections:

	From Input [1]	From Input [2]
To Output [1]	9.19×10^{-2}	8.38×10^{-2}
To Output [2]	5.90×10^{-2}	2.22×10^{-2}

 One can keep trying different ad hoc selections but this is exactly what we want to avoid.

Wake Stabilization by Cylinder Rotation

Joint work with Jeff Borggaard (Virginia Tech)



Wake Stabilization by Cylinder Rotation

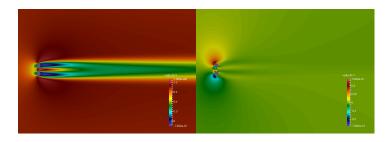


Figure: Steady-State Velocity Components at $Re_d = 60$

Goal:

Use linear feedback control to stabilize the wake behind two circular cylinders using cylinder rotation .

[Tokumaru/Dimotakis,91], [Blackburn/Henderson,99], [Bergmann et al.,00],
 [Afanasiev/Hinze, 99], [Noack et al.,03], [Stoyanov, 09], [Benner/Heiland,14], ...

Linearize the Navier-Stokes equations around the steady-state

$$\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), \quad \mathbf{v}(t) = \mathbf{C}\mathbf{x}(t)$$

• The LQR problem becomes: Find a control $\mathbf{u}(\cdot)$ that solves

$$\min_{\mathbf{u}} \int_{0}^{\infty} \left\{ \mathbf{y}^{T}(t)\mathbf{y}(t) + \alpha \|\mathbf{u}\|^{2}(t) \right\} dt,$$

subject to
$$\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t), \quad \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

Instead, reduce the dimension first. Solve

$$\min_{\mathbf{u}} \int_{0}^{\infty} \left\{ \mathbf{y}_{r}^{T}(t) \mathbf{y}_{r}(t) + \alpha \|\mathbf{u}\|^{2}(t) \right\} dt,$$

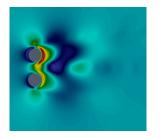
subject to
$$\mathbf{E}_r \dot{\mathbf{x}}_r(t) = \mathbf{A}_r \mathbf{x}_r(t) + \mathbf{B}_r u(t), \quad \mathbf{y}_r(t) = \mathbf{C}_r \mathbf{x}_r(t)$$

Model Reduction for the Two-cylinder Case

• n = 126150. We reduce the order to r = 140.

```
\lambda_{\text{unstable}}(\mathcal{H}(s)): 3.973912561638801 \times 10^{-2} \pm i 7.498560362688469 \times 10^{-1} 
\lambda_{\text{unstable}}(\mathcal{H}_r(s)): 3.973912526082657 \times 10^{-2} \pm i 7.498560367601876 \times 10^{-1}
```

Solve the reduced LQR problem and compute the functional gains:



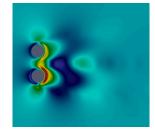
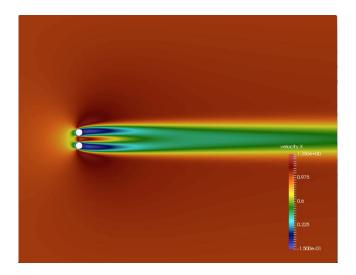
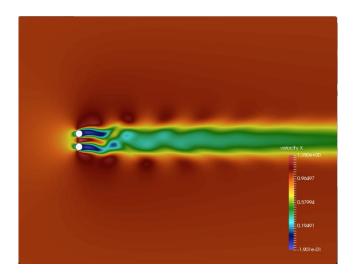


Figure: Horizontal (left) and Vertical (right) Components

Re = 60 Case: Open Loop Simulation



Re = 60 Case: Closed Loop from t = 100



Descent-based version: Gradient and Hessian

Theorem (Beattie./G [2009])

Let $\mathcal{H}(s)$ and $\mathcal{H}_r(s)$ be given. Then, for $i = 1, \ldots, r$,

$$\frac{\partial \mathcal{J}}{\partial \phi_i} = 2 \left(\mathbf{\mathcal{H}}_r(-\lambda_i) - \mathbf{\mathcal{H}}(-\lambda_i) \right)
\frac{\partial \mathcal{J}}{\partial \lambda_i} = -2 \phi_i \left(\mathbf{\mathcal{H}}_r'(-\lambda_i) - \mathbf{\mathcal{H}}'(-\lambda_i) \right)$$

and for $i, j = 1, \ldots, r$,

$$\begin{split} \frac{\partial^2 \mathcal{J}}{\partial \phi_i \partial \phi_j} &= -\frac{-2}{\lambda_i + \lambda_j}, \\ \frac{\partial^2 \mathcal{J}}{\partial \phi_i \partial \lambda_j} &= -2\phi_i \, \left(\mathcal{H}'_r(-\lambda_i) - \mathcal{H}'(-\lambda_i) \right) \, \delta_{ij} + \frac{2 \, \phi_j}{(\lambda_i + \lambda_j)^2} \\ \frac{\partial^2 \mathcal{J}}{\partial \lambda_i \partial \lambda_j} &= 2\phi_i \, \left(\mathcal{H}''_r(-\lambda_i) - \mathcal{H}''(-\lambda_i) \right) \, \delta_{ij} - \frac{4\phi_i \, \phi_j}{(\lambda_i + \lambda_j)^3} \end{split}$$

\mathcal{H}_{∞} Model Reduction Problem

• Find $\mathfrak{H}_r(s) = \mathbf{c}_r(s\mathbf{E}_r - \mathbf{A}_r)^{-1}\mathbf{b}_r + \frac{d_r}{d_r}$ that minimizes $\left\| \mathfrak{H} - \mathfrak{H}_r \right\|_{\mathcal{H}_\infty} = \sup_{\omega \in \mathbb{R}} \left| \mathfrak{H}(\imath \omega) - \mathfrak{H}_r(\imath \omega) \right|$

• $d_r = 0$ forces $\mathcal{H}_r(\infty) = \mathcal{H}(\infty)$ —not optimal in the \mathcal{H}_∞ norm.

Theorem (Trefethen,81)

Suppose H(s) is a scalar-valued transfer function associated with a SISO dynamical system. Let $\widehat{H}_r(s)$ be an optimal \mathcal{H}_∞ approximation to H(s) and let H_r be any r^{th} order stable approximation to H(s) that interpolates H(s) at 2r+1 points in the open right half-plane. Then

$$\min_{\omega \in \mathbb{R}} |H(j\omega) - H_r(j\omega)| \le \|H - \widehat{H}_r\|_{\mathcal{H}_{\infty}} \le \|H - H_r\|_{\mathcal{H}_{\infty}}$$

In particular, if $|H(j\omega) - H_r(j\omega)| = \text{const for all } \omega \in \mathbb{R}$ then H_r is itself an optimal \mathcal{H}_{∞} -approximation to G(s).

- IRKA gives only 2r-zeroes in \mathbb{C}_+ .
- Recall: Interpolatory projection may be generalized to allow freedom in the d_r -term parameter and still preserve interpolation at the points $\{\sigma_i\}_{i=1}^{2r}$ [Mayo/Antoulas,07, Beattie/G,08]
- [Flagg/Beattie/G.,10]: Force interpolation at the 2r IRKA-points, and compute real-valued d_r -term that minimizes the \mathcal{H}_{∞} error: IHA

• For optimal \mathcal{H}_{∞} approximants, $\lim_{s \to \infty} \mathcal{H}_r(s) \neq \lim_{s \to \infty} \mathcal{H}(s)$

Theorem ([Beattie/G.,09] [Mayo/Antoulas,07])

Given $\{\mu_i\}_{i=1}^r \cup \{\sigma_j\}_{j=1}^r$,, let $\mathbf{V}_r \in \mathbb{C}^{n \times r}$ and $\mathbf{W}_r \in \mathbb{C}^{n \times r}$ be as before. Let

$$\mathbf{e} = [1, 1, \dots, 1]^T \in \mathbb{R}^r$$

For any $d_r \in \mathbb{C}$, define

$$\mathbf{E}_r(s) = \mathbf{W}_r^T \mathbf{E} \mathbf{V}_r, \quad \mathbf{A}_r = \mathbf{W}_r^T \mathbf{A} \mathbf{V}_r + d_r \mathbf{e} \mathbf{e}^T,$$
$$\mathbf{b}_r = \mathbf{W}_r^T \mathbf{b} - d_r \mathbf{e}, \quad \text{and} \quad \mathbf{c}_r = \mathbf{V}_r^T \mathbf{c} - d_r \mathbf{e}.$$

Then with
$$\mathfrak{H}_r(s) = \mathbf{c}_r^T (s\mathbf{E}_r - \mathbf{A}_r)^{-1} \mathbf{b}_r + d_r$$
, we have

$$\mathfrak{H}(\sigma_i) = \mathfrak{H}_r(\sigma_i)$$
 and $\mathfrak{H}(\mu_i) = \mathfrak{H}_r(\mu_i)$ for $i = 1, ..., r$.

Interpolatory \mathcal{H}_{∞} Approximation

- Based on [Flagg/Beattie/G., 2013].
- Run IRKA to obtain $\mathcal{H}_r(s) = \mathbf{c}_r(s\mathbf{E}_r \mathbf{A}_r)^{-1}\mathbf{b}_r$.
- Define

$$\mathcal{H}_r^d(s, d_r) = (\mathbf{c}_r - d_r \mathbf{e}^T)(s\mathbf{E}_r - (\mathbf{A}_r + d_r \mathbf{e} \mathbf{e}^T))^{-1}(\mathbf{b}_r - d_r \mathbf{e}) + d_r$$

Solve

$$d_r^{opt} = \operatorname*{arg\,min}_{d_r} \left\| \mathcal{H} - \mathcal{H}_r^d \right\|_{\mathcal{H}_\infty}$$

• The \mathcal{H}_{∞} approximation via IHA is

$$\mathcal{H}_r^{opt}(s) = (\mathbf{c}_r^T - d_r^{opt}\mathbf{e}^T)(s\mathbf{E}_r - (\mathbf{A}_r + d_r^{opt}\mathbf{e}\mathbf{e}^T))^{-1}(\mathbf{b}_r - d_r^{opt}\mathbf{e}) + d_r^{opt}$$

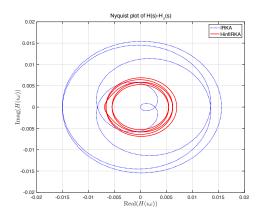


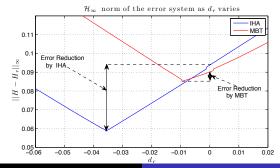
Table: Relative \mathcal{H}_{∞} error norms

r	IHA	BT	HNA	Lower Bound
2	4.45×10^{-3}	8.21×10^{-3}	3.95×10^{-3}	3.72×10^{-3}

CD Player Model: n = 120

Table: CD Player Model: Relative \mathcal{H}_{∞} error norms

r	IHA	BT	HNA	Lower Bound
2	3.66×10^{-1}	3.68×10^{-1}	3.35×10^{-1}	1.96×10^{-1}
4	2.14×10^{-2}	2.25×10^{-2}	2.00×10^{-2}	1.13×10^{-2}
6	1.04×10^{-2}	1.19×10^{-2}	1.23×10^{-2}	6.82×10^{-3}
8	4.85×10^{-3}	6.40×10^{-3}	5.99×10^{-3}	3.22×10^{-3}
10	8.99×10^{-4}	1.24×10^{-3}	1.08×10^{-3}	5.88×10^{-4}



Conclusions: Part I

- Uses the concept of rational interpolation and transfer function
- Optimal interpolation points in the \mathcal{H}_2 norm
- Extension to parametrized systems (see Beattie's talk on Feb 4)

$$\mathbf{E}(\mathsf{p})\,\dot{\mathbf{x}}(t;\mathsf{p}) = \mathbf{A}(\mathsf{p})\,\mathbf{x}(t;\mathsf{p}) + \mathbf{b}(\mathsf{p})\,u(t), \quad y(t;\mathsf{p}) = \mathbf{c}^T(\mathsf{p})\,\mathbf{x}(t;\mathsf{p}), \quad \mathsf{p} \in \mathbb{C}^{\nu}$$

$$\Longrightarrow \quad \mathcal{H}(s,\,\mathsf{p}) = \mathbf{c}^T(\mathsf{p})\,(s\mathbf{E}(\mathsf{p}) - \mathbf{A}(\mathsf{p}))^{-1}\mathbf{b}(\mathsf{p})$$
Construct $\mathcal{H}_r(s) = \mathbf{c}_r^T(\mathsf{p})\,(s\mathbf{E}_r(\mathsf{p}) - \mathbf{A}_r(\mathsf{p}))^{-1}\mathbf{b}_r(\mathsf{p}) \text{ so that}$

$$\mathcal{H}(\sigma_k, \pi_j) = \mathcal{H}_r(\sigma_k, \pi_j), \qquad \frac{\partial}{\partial s}\mathcal{H}(\sigma_k, \pi_j) = \frac{\partial}{\partial s}\mathcal{H}_r(\sigma_k, \pi_j),$$

$$\nabla_{\mathsf{p}}\mathcal{H}(\sigma_k, \pi_j) = \nabla_{\mathsf{p}}\mathcal{H}_r(\sigma_k, \pi_j)$$

• Structure preserving interpolation (see Beattie's talk on Feb 4)

Conclusions: Part I

- Uses the concept of rational interpolation and transfer function
- Optimal interpolation points in the \mathcal{H}_2 norm
- Extension to parametrized systems (see Beattie's talk on Feb 4)

$$\mathbf{E}(\mathsf{p})\,\dot{\mathbf{x}}(t;\mathsf{p}) = \mathbf{A}(\mathsf{p})\,\mathbf{x}(t;\mathsf{p}) + \mathbf{b}(\mathsf{p})\,u(t), \quad y(t;\mathsf{p}) = \mathbf{c}^T(\mathsf{p})\,\mathbf{x}(t;\mathsf{p}), \quad \mathsf{p} \in \mathbb{C}^{\nu}$$

$$\Longrightarrow \quad \mathfrak{H}(s,\,\mathsf{p}) = \mathbf{c}^T(\mathsf{p})\,(s\mathbf{E}(\mathsf{p}) - \mathbf{A}(\mathsf{p}))^{-1}\mathbf{b}(\mathsf{p})$$
Construct $\mathfrak{H}_r(s) = \mathbf{c}_r^T(\mathsf{p})\,(s\mathbf{E}_r(\mathsf{p}) - \mathbf{A}_r(\mathsf{p}))^{-1}\mathbf{b}_r(\mathsf{p})$ so that
$$\mathfrak{H}(\sigma_k, \pi_j) = \mathfrak{H}_r(\sigma_k, \pi_j), \quad \frac{\partial}{\partial s}\mathfrak{H}(\sigma_k, \pi_j) = \frac{\partial}{\partial s}\mathfrak{H}_r(\sigma_k, \pi_j),$$

$$\nabla_{\mathsf{p}}\mathfrak{H}(\sigma_k, \pi_j) = \nabla_{\mathsf{p}}\mathfrak{H}_r(\sigma_k, \pi_j)$$

• Structure preserving interpolation (see Beattie's talk on Feb 4)

- Uses the concept of rational interpolation and transfer function
- Optimal interpolation points in the \mathcal{H}_2 norm
- Extension to parametrized systems (see Beattie's talk on Feb 4)

$$\mathbf{E}(\mathsf{p})\,\dot{\mathbf{x}}(t;\mathsf{p}) = \mathbf{A}(\mathsf{p})\,\mathbf{x}(t;\mathsf{p}) + \mathbf{b}(\mathsf{p})\,u(t), \quad y(t;\mathsf{p}) = \mathbf{c}^T(\mathsf{p})\,\mathbf{x}(t;\mathsf{p}), \quad \mathsf{p} \in \mathbb{C}^{\nu}$$

$$\Longrightarrow \quad \mathfrak{H}(s,\,\mathsf{p}) = \mathbf{c}^T(\mathsf{p})\,(s\mathbf{E}(\mathsf{p}) - \mathbf{A}(\mathsf{p}))^{-1}\mathbf{b}(\mathsf{p})$$
Construct $\mathfrak{H}_r(s) = \mathbf{c}_r^T(\mathsf{p})\,(s\mathbf{E}_r(\mathsf{p}) - \mathbf{A}_r(\mathsf{p}))^{-1}\mathbf{b}_r(\mathsf{p})$ so that
$$\mathfrak{H}(\sigma_k, \pi_j) = \mathfrak{H}_r(\sigma_k, \pi_j), \qquad \frac{\partial}{\partial s}\mathfrak{H}(\sigma_k, \pi_j) = \frac{\partial}{\partial s}\mathfrak{H}_r(\sigma_k, \pi_j),$$

• Structure preserving interpolation (see Beattie's talk on Feb 4)

 $\nabla_{\mathbf{p}} \mathcal{H}(\sigma_k, \boldsymbol{\pi}_i) = \nabla_{\mathbf{p}} \mathcal{H}_r(\sigma_k, \boldsymbol{\pi}_i)$

Conclusions: Part I

- Uses the concept of rational interpolation and transfer function
- Optimal interpolation points in the \mathcal{H}_2 norm
- Extension to parametrized systems (see Beattie's talk on Feb 4)

$$\begin{split} \mathbf{E}(\mathbf{p}) \, \dot{\mathbf{x}}(t; \mathbf{p}) &= \mathbf{A}(\mathbf{p}) \, \mathbf{x}(t; \mathbf{p}) + \mathbf{b}(\mathbf{p}) \, u(t), \quad y(t; \mathbf{p}) = \mathbf{c}^T(\mathbf{p}) \, \mathbf{x}(t; \mathbf{p}), \quad \mathbf{p} \in \mathbb{C}^{\nu} \\ &\implies \quad \mathcal{H}(s, \, \mathbf{p}) = \mathbf{c}^T(\mathbf{p}) \, (s\mathbf{E}(\mathbf{p}) - \mathbf{A}(\mathbf{p}))^{-1} \mathbf{b}(\mathbf{p}) \\ &\text{Construct } \mathcal{H}_r(s) = \mathbf{c}_r^T(\mathbf{p}) \, (s\mathbf{E}_r(\mathbf{p}) - \mathbf{A}_r(\mathbf{p}))^{-1} \mathbf{b}_r(\mathbf{p}) \text{ so that} \end{split}$$

$$\mathcal{H}(\sigma_k, \boldsymbol{\pi}_j) = \mathcal{H}_r(\sigma_k, \boldsymbol{\pi}_j), \quad \frac{\partial}{\partial s} \mathcal{H}(\sigma_k, \boldsymbol{\pi}_j) = \frac{\partial}{\partial s} \mathcal{H}_r(\sigma_k, \boldsymbol{\pi}_j), \\ \nabla_{\mathsf{p}} \mathcal{H}(\sigma_k, \boldsymbol{\pi}_j) = \nabla_{\mathsf{p}} \mathcal{H}_r(\sigma_k, \boldsymbol{\pi}_j)$$

Structure preserving interpolation (see Beattie's talk on Feb 4)

A more general problem setting

Consider the following example from [Antoulas,05]:

$$\frac{\partial T}{\partial t}(z,t) = \frac{\partial^2 T}{\partial z^2}(z,t), \quad t \ge 0, \quad z \in [0,1]$$

with the boundary conditions

$$\frac{\partial T}{\partial t}(0,t) = 0$$
 and $\frac{\partial T}{\partial z}(1,t) = u(t)$

- u(t) is the input function (supplied heat)
- v(t) = T(0,t) is the output.
- $\mathcal{H}(s) = \frac{Y(s)}{U(s)} = \frac{1}{\sqrt{s} \sinh \sqrt{s}} \neq \mathbf{c}^T (s\mathbf{E} \mathbf{A})^{-1} \mathbf{b}$ • Transfer function:

- Do not assume the generic first-order structure.
- Only assume the ability to evaluate $\mathcal{H}(s)$ (and $\mathcal{H}'(s)$) at $s \in \mathbb{C}$.
- For example:

•
$$\Re(s) = \frac{1}{\sqrt{s} \sinh \sqrt{s}}$$

•
$$\mathcal{H}(s) = (s\mathbf{C}_1 + \mathbf{C}_0)(s^2\mathbf{M} + s\mathbf{D} + \mathbf{K})^{-1}\mathbf{B}$$

• Given the samples $\{\mathcal{H}(s_1), \mathcal{H}(s_2), \dots, \mathcal{H}(s_N)\}$; construct:

$$\begin{array}{c|c}
\mathbf{\mathcal{H}}(s) & \stackrel{?}{\approx} & \mathbf{E}_r \dot{\mathbf{x}} = \mathbf{A}_r \mathbf{x}_r(t) + \mathbf{B}_r \mathbf{u}(t) \\
\mathbf{y}_r(t) = \mathbf{C}_r \mathbf{x}_r(t)
\end{array}$$

How to obtain the data $\{\mathcal{H}(s_1), \mathcal{H}(s_2), \dots, \mathcal{H}(s_N)\}$?

- Do not assume the generic first-order structure.
- Only assume the ability to evaluate $\mathcal{H}(s)$ (and $\mathcal{H}'(s)$) at $s \in \mathbb{C}$.
- For example:

•
$$\Re(s) = \frac{1}{\sqrt{s} \sinh \sqrt{s}}$$

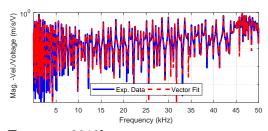
•
$$\mathcal{H}(s) = (s\mathbf{C}_1 + \mathbf{C}_0)(s^2\mathbf{M} + s\mathbf{D} + \mathbf{K})^{-1}\mathbf{B}$$

• Given the samples $\{\mathcal{H}(s_1), \mathcal{H}(s_2), \dots, \mathcal{H}(s_N)\}$; construct:

$$\begin{array}{c|c}
\mathbf{\mathcal{H}}(s) & \overset{?}{\approx} & \mathbf{E}_r \dot{\mathbf{x}} = \mathbf{A}_r \mathbf{x}_r(t) + \mathbf{B}_r \mathbf{u}(t) \\
\mathbf{y}_r(t) = \mathbf{C}_r \mathbf{x}_r(t)
\end{array}$$

How to obtain the data $\{\mathcal{H}(s_1), \mathcal{H}(s_2), \dots, \mathcal{H}(s_N)\}$?

3D Laser Vibrometer (VAST LAB, Virginia Tech)



• [Malladi/Albakri/Krishnan/G./Tarazaga, 2019]

Main Ingredients: [Mayo/Antoulas (2007)]

• The Loewner matrix:

$$\mathbb{L}_{ij} = \frac{\mathcal{H}(\mu_i) - \mathcal{H}(\sigma_j)}{\mu_i - \sigma_j}, \quad i, j = 1, \dots, r, \quad (\mathcal{H}(s))$$

The shifted Loewner matrix:

$$\mathbb{M}_{ij} = \frac{\mu_i \mathcal{H}(\mu_i) - \mathcal{H}(\sigma_j) \sigma_j}{\mu_i - \sigma_j}, \quad i, j = 1, \dots, r \quad (s\mathcal{H}(s))$$

In addition to \mathbb{L} and \mathbb{M} , construct the following matrices from data:

$$z = \left[\begin{array}{c} \mathcal{H}(\mu_1) \\ \vdots \\ \mathcal{H}(\mu_r) \end{array} \right] \qquad \mathsf{q} = \left[\begin{array}{c} \mathcal{H}(\sigma_1) \\ \vdots \\ \mathcal{H}(\sigma_r) \end{array} \right]$$

Data-Driven Interpolant

Theorem (Mayo/Antoulas,2007)

Assume that $\mu_i \neq \sigma_j$ for all i, j = 1, ..., r. Suppose that $\mathbb{M} - s \mathbb{L}$ is invertible for all $s \in {\sigma_i} \cup {\mu_j}$. Then, with

$$\mathbf{E}_r = -\mathbb{L}, \quad \mathbf{A}_r = -\mathbb{M}, \quad \mathbf{b}_r = \mathsf{z}, \quad \mathbf{c}_r = \mathsf{q},$$

the rational function (reduced model)

$$\mathcal{H}_r(s) = \mathbf{c}_r^T (s\mathbf{E}_r - \mathbf{A}_r)^{-1} \mathbf{b}_r = \mathbf{q}^T (\mathbb{M} - s \, \mathbb{L})^{-1} \mathbf{z}$$

interpolates the data and furthermore is a minimal realization.

• For Hermite interpolation, choose $\sigma_i = \mu_i$ and only modify

$$\mathbb{L}_{ii} = \mathcal{H}'(\sigma_i)$$
 and $\mathbb{M}_{ii} = [s\mathcal{H}(s)]'_{s=\sigma_i}$

Sketch of the proof

- Assume $\mathcal{H}(s) = \mathbf{c}^T (s\mathbf{E} \mathbf{A})^{-1} \mathbf{b}$ (not necessary).
- $\mathcal{H}(\mu_i) \mathcal{H}(\sigma_i) = (\sigma_i \mu_i) \mathbf{c}^T (\mu_i \mathbf{E} \mathbf{A})^{-1} \mathbf{E} (\sigma_i \mathbf{E} \mathbf{A})^{-1} \mathbf{b}$. $\Longrightarrow \mathbb{L} = -\mathbf{W}_r^T \mathbf{E} \mathbf{V}_r$
- $\mu_i \mathcal{H}(\mu_i) \sigma_i \mathcal{H}(\sigma_i) = (\sigma_i \mu_i) \mathbf{c}^T (\mu_i \mathbf{E} \mathbf{A})^{-1} \mathbf{A} (\sigma_i \mathbf{E} \mathbf{A})^{-1} \mathbf{b}$. $\Longrightarrow \mathbb{M} = -\mathbf{W}_{r}^{T}\mathbf{A}\mathbf{V}_{r}$
- Also $z = W_r^T b$ and $q = V_r^T c_r$ by definition. $\Rightarrow \mathcal{H}_r(s) = \mathbf{g}^T (\mathbb{M} - s \mathbb{L})^{-1} \mathbf{z}$ is an interpolant to $\mathcal{H}(s)$.

Recall interpolatory \mathcal{H}_2 optimality conditions

Theorem ([Meier /Luenberger,67], [G./Antoulas/Beattie,08])

Given $\mathcal{H}(s)$, let $\mathcal{H}_r(s)$ be the best stable r^{th} order approximation of \mathcal{H} with respect to the \mathcal{H}_2 norm. Assume $\mathcal{H}_r(s)$ has simple poles at $\hat{\lambda}_1, \hat{\lambda}_2, \dots, \hat{\lambda}_r$. Then

$$\mathfrak{H}(-\hat{\lambda}_k) = \mathfrak{H}_r(-\hat{\lambda}_k)$$
 and $\mathfrak{H}'(-\hat{\lambda}_k) = \mathfrak{H}'_r(-\hat{\lambda}_k)$ for $k = 1, 2, ..., r$.

- Hermite interpolation for \mathcal{H}_2 optimality
- Optimal interpolation points : $\sigma_i = -\hat{\lambda}_i$
- Does NOT require $\mathcal{H}(s)$ to be a rational function.
- In IRKA, replace the projection framework by the Loewner framework

Recall IRKA

Algorithm (G./Antoulas/Beattie [2008])

- **1** Choose $\{\sigma_1, \ldots, \sigma_r\}$
- $\mathbf{V}_r = \left[(\sigma_1 \mathbf{E} \mathbf{A})^{-1} \mathbf{b}, \cdots, (\sigma_r \mathbf{E} \mathbf{A})^{-1} \mathbf{b} \right]$ $\mathbf{W}_r = \left[(\sigma_1 \mathbf{E}^T - \mathbf{A}^T)^{-1} \mathbf{c}^T, \cdots, (\sigma_r \mathbf{E}^T - \mathbf{A}^T)^{-1} \mathbf{c}^T \right].$
- while (not converged)
 - $\mathbf{0} \ \mathbf{A}_r = \mathbf{W}_r^T \mathbf{A} \mathbf{V}_r, \ \mathbf{E}_r = \mathbf{W}_r^T \mathbf{E} \mathbf{V}_r$
 - \bullet $\sigma_i \longleftarrow -\lambda_i(\mathbf{A}_r, \mathbf{E}_r)$. (Reflect the current poles)
 - $\mathbf{3} \ \mathbf{V}_r = \left[(\sigma_1 \mathbf{E} \mathbf{A})^{-1} \mathbf{b}, \ \cdots, \ (\sigma_r \mathbf{E} \mathbf{A})^{-1} \mathbf{b} \right]$
 - $\mathbf{W}_r = \left[(\sigma_1 \mathbf{E}^T \mathbf{A}^T)^{-1} \mathbf{c}^T, \cdots, (\sigma_r \mathbf{E}^T \mathbf{A}^T)^{-1} \mathbf{c}^T \right]$
- $\mathbf{A}_r = \mathbf{W}_r^T \mathbf{A} \mathbf{V}_r$, $\mathbf{E}_r = \mathbf{W}_r^T \mathbf{E} \mathbf{V}_r$, $\mathbf{b}_r = \mathbf{W}_r^T \mathbf{b}$, and $\mathbf{c}_r = \mathbf{V}_r^T \mathbf{c}$, $\mathbf{D}_r = \mathbf{D}$.
 - Iteratively corrected rational Hermite interpolants

Realization Independent IRKA: TF-IRKA

- Drop the need for $\mathcal{H}(s) = \mathbf{c}^T (s\mathbf{E} \mathbf{A})^{-1} \mathbf{b}$
- Only assume the ability to evaluate $\mathcal{H}(s)$ and $\mathcal{H}'(s)$

Algorithm (Realization Independent IRKA [Beattie/G., (2012)])

- Choose initial $\{\sigma_i\}$ for $i=1,\ldots,r$.
- while not converged
 - Evaluate $\mathcal{H}(\sigma_i)$ and $\mathcal{H}'(\sigma_i)$ for $i = 1, \ldots, r$.
 - 2 Construct $\mathbf{E}_r = -\mathbb{L}$. $\mathbf{A}_r = -\mathbb{M}$. $\mathbf{b}_r = \mathsf{z}$ and $\mathbf{c}_r = \mathsf{q}$
 - **3** Construct $\mathcal{H}_r(s) = \mathbf{c}_r^T (s\mathbf{E}_r \mathbf{A}_r)^{-1} \mathbf{b}_r$
 - \bullet $\sigma_i \longleftarrow -\lambda_i(\mathbf{A}_r, \mathbf{E}_r)$ for $i = 1, \ldots, r$
- Construct $\mathcal{H}_r(s) = \mathbf{c}_r^T (s\mathbf{E}_r \mathbf{A}_r)^{-1} \mathbf{b}_r = \mathbf{q}^T (\mathbb{M} s \mathbb{L})^{-1} \mathbf{z}$
- Allows infinite order transfer functions !! e.g., $\mathcal{H}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A}_0 - e^{-\tau_1 s} \mathbf{A}_1 - e^{-\tau_2 s} \mathbf{A}_2)^{-1} \mathbf{B}$

•
$$\frac{\partial T}{\partial t}(z,t) = \frac{\partial^2 T}{\partial z^2}(z,t), \ \frac{\partial T}{\partial t}(0,t) = 0, \frac{\partial T}{\partial z}(1,t) = u(t), \ y(t) = T(0,t)$$

$$\bullet \, \mathcal{H}(s) = \frac{1}{\sqrt{s} \sinh \sqrt{s}}$$

- Apply TF-IRKA. Cost: Evaluate $\mathcal{H}(s)$ and $\mathcal{H}'(s)$!!!
- Optimal points upon convergence: $\sigma_1 = 20.9418$, $\sigma_2 = 10.8944$.

$$\mathcal{H}_r(s) = \frac{-0.9469s - 37.84}{s^2 + 31.84s + 228.1} + \frac{1}{s}$$

- $\|\mathcal{H} \mathcal{H}_r\|_{\mathcal{H}_2} = 5.84 \times 10^{-3}, \|\mathcal{H} \mathcal{H}_r\|_{\mathcal{H}_{\infty}} \approx 9.61 \times 10^{-4}$
- Balanced truncation of the discretized model:

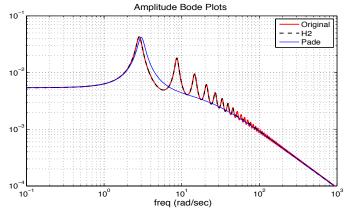
•
$$n = 1000$$
: $\|\mathcal{H} - \mathcal{H}_r\|_{\mathcal{H}_2} = 5.91 \times 10^{-3}$, $\|\mathcal{H} - \mathcal{H}_r\|_{\mathcal{H}_{\infty}} \approx 1.01 \times 10^{-3}$

Delay Example

- $\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{A}_1\mathbf{x}(t) + \mathbf{A}_2\mathbf{x}(t-\tau) + \mathbf{b}\mathbf{u}(t), \quad \mathbf{v}(t) = \mathbf{c}^T\mathbf{x}(t), \quad n = 1000.$

- Obtain an order r=20 optimal \mathcal{H}_2 rational approximation directly using $\mathcal{H}(s)$ and $\mathcal{H}'(s)$
- $\mathcal{H}_r(s)$ exactly interpolates $\mathcal{H}(s)$. This will not be the case if $e^{-\tau s}$ is approximated by a rational function.
- Moreover, the rational approximation of $e^{-\tau s}$ increases the order drastically.

Delay Example



- Relative errors: TF-IRKA: 8.63×10^{-3} Pade approx: 5.40×10^{-1}
- Pade Model has dimension N = 3000 !!!
- [Pontes Duff et al, 2015], [Pontes Duff et al, 2015]: Optimality for special delay systems.

An example on data-driven parametric modeling

• A parametrized (transfer) function/mapping: $\mathcal{H}(s, p)$:

$$\{\mathcal{H}(s_1,p_1),\mathcal{H}(s_1,p_2),\ldots,\mathcal{H}(s_N,p_M)\} \implies \mathcal{H}_r(s,p) \approx \mathcal{H}(s,p)$$

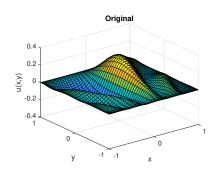
• What form of $\mathcal{H}_r(s,p)$ to choose:

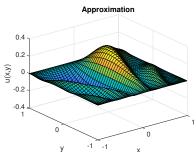
$$\mathcal{H}_r(s,p) = \sum_{i=1}^k \sum_{j=1}^q \frac{\alpha_{ij} h_{ij}}{(s-s_1)(p-p_j)} / \sum_{i=1}^k \sum_{j=1}^q \frac{\alpha_{ij}}{(s-s_1)(p-p_j)}$$

- $\mathcal{H}(s_i, p_i) = \mathcal{H}_r(s_i, p_i)$ for i = 1, ..., k and j = 1, ..., q
- pAAA: Pick α_{ii} to minimize a LS error in the rest of the data ([Carracedo Rodriguez/G.,2019])
- Parametric-Loewner (full interpolation): [Lefteriu/Antoulas, 2013] and [Ionita/Antoulas, 2014]

A parametrized stationary PDE ([Chen/Jiang/Narayan, 19])

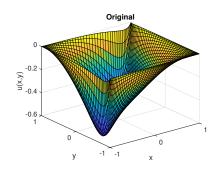
- $v_{xx} + pv_{yy} + sv = 10\sin(8x(y-1))$ on $\Omega = [-1, 1] \times [-1, 1]$ with homogeneous Dirichlet boundary conditions.
- N = M = 20 linearly spaced samples in $[0.1, 4] \times [0, 2]$.
- pAAA results in (k, q) = (3, 3). ([Carracedo Rodriguez/G.,2019])

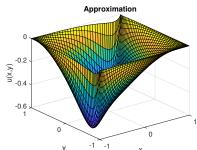




A parametrized stationary PDE ([Chen/Jiang/Narayan, 19])

- $(1+px)v_{xx}+(1+sy)v_{yy}=e^{4xy}$ on $\Omega=[-1,1]\times[-1,1]$ with homogeneous Dirichlet boundary conditions.
- N = M = 20 linear samples in $[-0.99, 0.99] \times [-0.99, 0.99]$.
- pAAA results in (k, q) = (14, 8). ([Carracedo Rodriguez/G.,2019])





Conclusions

- Interpolatory model reduction is good for you !!!
- A powerful framework for model reduction.
- Can create locally optimal reduced models effectively.
- Extended to parametrized systems.
- Data-driven formulation
- Extended to bilinear and quadratic-in-state systems.

URL: https://personal.math.vt.edu/gugercin/publications.html

- S. Gugercin, A.C. Antoulas, and C.A. Beattie, H₂ model reduction for large-scale linear dynamical systems, SIMAX, 2008.
- C.A. Beattie and S. Gugercin, A Trust Region Method for Optimal H₂ Model Reduction, Proceedings of the 48th IEEE Conference on Decision and Control, 2009.
- S. Flagg and S. Gugercin, Multipoint Volterra Series Interpolation and H₂ Optimal Model Reduction of Bilinear Systems, SIMAX, 2015.
- A.C. Antoulas, C.A. Beattie and S. Gugercin, Interpolatory Model Reduction of Large-scale Dynamical Systems, Efficient Modeling and Control of Large-Scale System, Springer-Verlag, 2010.
- J. Borggaard and S. Gugercin, Model Reduction for DAEs with an Application to Flow Control, Active Flow and Combustion Control 2014, Springer-Verlag, 2015.
- C.A. Beattie and S. Gugercin, Model Reduction by Rational Interpolation, Model Reduction and Approximation: Theory and Algorithms, SIAM, 2017.
- P. Benner, P. Goyal, and S. Gugercin, H₂-Quasi-Optimal Model Order Reduction for Quadratic-Bilinear Control Systems, SIMAX, 2018.
- A.C. Antoulas, C.A. Beattie, and S. Gugercin, Interpolatory Methods for Model Reduction, SIAM Publications, Philadelphia, PA, 2020.