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@ Linear dynamical systems:
Ex(r) = Ax(¢) + Bu(r), y(¢) = Cx(¢)

o Rational interpolation problem
o Projection-based rational interpolation
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@ Linear dynamical systems:
Ex(r) = Ax(¢) + Bu(r), y(¢) = Cx(¢)
o Rational interpolation problem

o Projection-based rational interpolation

@ Optimal rational interpolation
o Optimality in the #, norm
o lterative Rational Krylov Algorithm
@ Data-driven (frequency-domain) rational interpolation

o Loewner framework
e Time-domain Loewner: See Peherstorfer’s talk this afternoon.
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@ Linear dynamical systems:
Ex(r) = Ax(¢) + Bu(r), y(¢) = Cx(¢)
o Rational interpolation problem

o Projection-based rational interpolation

@ Optimal rational interpolation
o Optimality in the #, norm
o lterative Rational Krylov Algorithm
@ Data-driven (frequency-domain) rational interpolation

o Loewner framework
e Time-domain Loewner: See Peherstorfer’s talk this afternoon.

@ If time allows:
o Ex(r) =Ax(r) + Nxu(r) + H(x®x) +Bu(r), y() =Cx(r)
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Intro

Indoor-air environment in a conference room

Figure: Geometry for our Indoor-air Simulation:
Example from [Borggaard/Cliff/G., 2011], research under EEBHUB

@ Four inlets, one return vent
@ Thermal loads: two windows, two overhead lights and occupants
@ A FE model for thermal energy transfer with frozen velocity field v:
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Intro

oT 1
— +v-VT = AT + B
ot LAY RePr + B,

=  Ex(t) = Ax(r) +Bu(r), y() =Cx(r)
@ xcR", and E,A € R™" with n = 202140,
@ BeR"™" and ueR"™ with m =2 inputs (forcing)

@ the temperature of the inflow air at all four vents, and

@ a disturbance caused by occupancy around the conference table,

@ CcR?" and yeR? with ¢ =2 outputs (measurements)
@ the temperature at a sensor location on the max x wall,

@ the average temperature in an occupied volume around the table,
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LinSys Settings Proj Meas Intrplt

Linear Dynamical Systems

S: u(t)— — ¥y(1)

@ ALEcR™ BecR"™" CecR andD € R
@ x(t) € R" : states, u(r) € R™:Input, y(z) € R?: Output
@ State-space dimension, n, is quite large

@ What is important is the mapping “u — y”, NOT the complete state
information x(z) = Remove the unimportant states.
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Linear Dynamical Systems

S: u(t)— — ¥y(1)

@ ALEcR™ BecR"™" CecR andD € R
@ x(t) € R" : states, u(r) € R™:Input, y(z) € R?: Output
@ State-space dimension, n, is quite large

@ What is important is the mapping “u — y”, NOT the complete state
information x(z) = Remove the unimportant states.

Parametrized linear dynamical systems (see Beattie’s talk on Feb 4)

E(p) x(1;p) = A(p) x(1;p) + B(p)u(r), y(;p) = C(p)x(1;p), peC”
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LinSys Settings Proj Meas Intrplt

@ Project the dynamics onto r-dimenisonal dimensional subspaces

E, x,(t) = A, x,(t) + B, u(?)

S = Ty = ex) +Dou) [ YO YO

with A, E, ¢ R™" B, ¢ R C, € R?”*" and D, € R?*" such that

o |ly — y/|| is smallin an appropriate norm
e Important structural properties of S are preserved
e The procedure is computationally efficient.
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@ Project the dynamics onto r-dimenisonal dimensional subspaces

E, x,(t) = A, x,(t) + B, u(?)

S = Ty = ex) +Dou) [ YO YO

with A, E, ¢ R™" B, ¢ R C, € R?”*" and D, € R?*" such that

o |ly — y/|| is smallin an appropriate norm
e Important structural properties of S are preserved
e The procedure is computationally efficient.

@ For simplicity of notation, assume m = g = 1:
B—obecR', C—c eR", and, DodecR = u(r), y(r) €R

For the MIMO case details, see [Antoulas/Beattie/G.,20].
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Model
Reduction

c’ | 7 [ ¢ |

Figure: Projection-based Model Reduction
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LinSys Settings Proj Meas Intrplt

Model Reduction via Projection

@ Choose V, = Range(V,): the r-dimensional right modeling
subspace (the trial subspace) where V, € R**"

@ and W, = Range(W,), the r-dimensional left modeling subspace
(test subspace) where W, € R"*"

@ Approximate x(¢) ~ V, x,(r) by forcing x, () to satisfy
—~ N

nx1 nxr  rxl
W, (EV,x, — AV,x, —bu) =0 (Petrov-Galerkin)
@ Leads to a reduced order model:

E, =W, EV,, A, =W,TAV,, b,=W,”’b, ¢, = V,¢, d,=_d
R N N——~ N~~~

rxr rxr rx1 gxr 1x1

Gugercin Interpolatory methods for model reduction



LinSys Settings Proj Meas Intrplt

Impulse Response and Transfer Functions

0 S ult) > y(t) = (Su)(t) = /_ "Rt — Pu(r)dr.

elet E=I and d=0: h(r)=cle*b (impulse response)
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Impulse Response and Transfer Functions

0 S ult) > y(t) = (Su)(t) = /_ "Rt — Pu(r)dr.
elet E=I and d=0: h(r)=cle*b (impulse response)

@ H(s) = /OOO h(t)e dr = ¢ (sE — A)"'b + d.

= Transfer function
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Impulse Response and Transfer Functions

0 S ult) > y(t) = (Su)(t) = /_ "Rt — Pu(r)dr.
elet E=I and d=0: h(r)=cle*b (impulse response)

@ H(s) = /OOO h(t)e dr = ¢ (sE — A)"'b + d.

= Transfer function

@ Take E=1,, A:{_? _g],b:[l},c:[o],dzo.

1 1 —1
ht)=e'—e? < H(s)= =
() =e”—e (s) Zi3512 s+l 512
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o Letj(w) = F(y(1), yr(w) = Fly-(1)), and i(w) = F(u(r)).

Full response:  y(w) = H(w)ia(w)
Reduced order response:  y,(w) = H,(w)ir(w)

with transfer functions:
H(s)=c'(sSE—A)"'b+d and 3(s) = c,(sE, — A,)"'b, + d,
y(t) =y (t) <= h(t)=h(t) <= H(s) = Hs)

z _ aps" + s -+
h(t) = e = H(s) =
() ;we (S) 5n+515n71+"‘+ﬂn

d v Gos" + a4 Gy
h(t) =) e = H,(s) = — _
j=1 Sr+6lsr ++Br
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Frequency Domain Plots

@ We will illustrate the error mostly in the frequency domain.

@ Amplitude Bode Plot: Draw || (w||2 VS w € R.
@ For the previous dynamical systems, we obtain the following:

; Frequency response of H(s)

-2 L L) L L)

10 s
2 107" 10° 10’ 10
w (rad/sec)

Figure: Frequency Response of HH(s)
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Error measure: H, Norm

@ L, norm of A(t) in time domain.
@ 2 — oo induced norm of S (when m = 1 and/or g = 1:)

IYllL..
luall

1FCll 3, = [I7ll,, = HSHzoo—sup

@ In general (for MIMO systems)

¢, = ([ Hh(t)\lidt)é (o [ It as)

Iy = ¥rll,, < 13 =3l [all,
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How to compute the #H, norm:

@ To have [|S||y, < oo, we need d = 0.

@ Given H(s) = ¢’ (sE — A)~'b, let P be the unique solution to
APE” + E"PA +bb" = 0.

Then,
Sy, = VelPe

@ Directly follows from the definition.

@ Matlab commands: norm (S, 2), normh2 (S), h2norm (S),
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Error measure: H., Norm

@ 2-2 induced norm of S:

Y2 Sul|>
18l = sup P2 — g 152 _ G gy,
u£0 Hu||2 u#0 H”Hz weR

@ ||S — S,lly..= Worst output error |[y(t) — y,(1)]l, for [luf> = 1.

1y = wrllz, < 13— Il Mlully,
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How to compute the H., norm:

@ letd=0
@ ||S — S/||n.. <~ ifand only if the matrix pencil

1
A ~bb”
4 [ 0B ] Lo
——ecel AT
5

has no purely imaginary eigenvalues.

@ Computationally intensive: [Boyd/Balakrishnan,1990],
[Boyd/Balakrishnan/Kabamba,1989], [Bruinsma/Steinbuch,1990],
[Benner/Byers/Mehrmann/Xu,1999], [Benner/Voigt, 2012], [Benner/Voigt, 2012],
[Aliyev et al., 2017],

@ Matlab commands: norm (S, inf), norminf (S),
hinfnorm(S),

Gugercin Interpolatory methods for model reduction
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Interpolating f(s)
@ Given the interpolation nodes {s;}_,, find p,(s) such that
f(s)) =pr(s;)) for i=0,...,r.

@ Consider f(s) = % for s € [-20,20]. Use linearly spaced nodes:

1

0.5

o

0.5
-2

1

0.5
o
0.5 L
-20 15 10 5 o 5 10 15 20
5 T
- r=14 f(s)
o - _ — - = .p(s)
’ )
-5 VR
n
v L L L A)
20 15 10 5 o 5 10 15 20
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Interpolating
sin s
® f(s) = Y for s € [-20,20]. Use Chebyshev nodes:

rcin Interpolatory methods for model reducti
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Model Reduction by Rational Interpolation

@ Given a transfer function 3((s) = ¢’ (sE — A)~'b together with

interpolation points: interpolation points:
{mitizy CC, {oj}imy CC

@ Find a reduced model H,(s) = ¢! (sE, — A,)"'b,, that is a rational
interpolant to J(s):

I (i) = FC(p) and H, (o)) = H(o;)
fori=1,---,r, forj=1,---,r,
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Interpolatory Model Reduction via Projection

@ Given {o;};_; and {u;}i_,, set
V,=[(ciE-A)"'b, .-+, (o;E — A)"'b] € C"*" and
W, =[(mE —A") e (1, ET —AT) le] e ™
@ Obtain 3, (s) via projection as before

E, =W,EV, A, =W,7AV,, b,=W,"b, ¢, =V, ¢, d =d.

@ Then
H(oj) = H, (o)), for j=1,---,r,

F(pi) = I (i), for i=1,---,r,
H(ox) = H(on)  if ox =

@ [Skelton et. al., 87], [Feldmann/Freund, 95], [Grimme, 97]

Gugercin Interpolatory methods for model reduction
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Interpolation Proof:

@ LetV, =Ran(V,) and W, = Ran(W,). Define

P.(z) = V,(zE, — A,)"'W,T(ZzE — A)
@ P(z) = P,(z) with V, = Ran(P,(z))

H(op) — H,(ox) = " (o E — A)~'b — T (o4E, — A,) "',
=T (0,E — A) " (I - Q,(07)) (04E — A) (1 - :p,(ak)) (o:E — A)"'b
@ Since v = (0;E — A)~'b € Ran(V,) = Ran (P,(z2)):
(1 - fP,(ak)> (:E —A)"'b = (1 - T,(ak))v =V P (o)V=V—v=0.

- g’C(O'k) = g’fr(dk)
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Interpolation Proof:

@ Analogously define Q,(z) = (zE — A)V,(zE, — A,)~'W/
@ Q%(z) = Q,(z) with Wi = Ker(Q,(z)) = Ran (I — Q,(z)). Then,
H(2) — H,(2) = (2B~ &) (1= Q,(2)) (2 — A) (1= P,(2) ) (A~ A) '
@ Evaluate at z = i to obtain: H () = I, (1)
@ Evaluate atz =0 +e¢:
H(o; +¢) — H, (0o + &) = O(e?).

Since H(o;) = H,(0y),

é (H(oi+¢e) —H(oy)) — é (H,(oi+¢) —H,(0;)) >0, as € = 0.

Gugercin Interpolatory methods for model reduction
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Reduction fromn =2tor=10

@ Recall the simple example
-3 -2 1 0

1

o }C(S) = CT(SE — A)_lb = m

@ Choose o1 = 111 = 0.
_ Ay Ih 0 _ —r. |05
oV, =(E-—A)"'b= { 0.5 W, =(mE—-A)"e= 15

Gugercin Interpolatory methods for model reduction
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LinSys Settings  Proj
@ H(s)=c'(sE—A)"'b= L
s2+3s5+2

e E, =W, 'EV, =0.75, A, =W, TAV, = —0.5,

@b, =W, b=0.5, ¢, =V,Te=0.5,

[SSTE

@ 3, (s) =c/(sE, — A,)"'b,

(s) (s ) 12
@ H(o)) =H(0) =3, (0)=05
v

! /
® H'(oy) = H.(0) = —0.75
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olet E=1 = V,=[oI-A)""b, -+, (6, I—A)"'b]

@ Then V, solves
V.~ — AV, = be’,

where ¥ = diag(cy,...,0,) and e=[1,1,...,1]".

@ Similarly, W, solves
W,M— ATW, = ce’
where M = diag(uy, ..., pr)

Gugercin Interpolatory methods for model reduction
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Higher-order Interpolation

Let o € C be such that bothcE — A and o E, — A, are invertible.

@it ((0E-A)" E)j_l (GE—A)"'beRan(V,) forj=1,.,N

then HO(o)=HO () for £=0,1,...,N—1

i—1
(b) if ((nE —A)_TET)] (WE—A)"ceRan(W,) forj = 1,., M,
then  HO(u) =HO(n) for £=0,1,....M—1;

(c) if both (a) and (b) hold, and if o = p,

then HO (o) =HY (o), fore=1,....M+N+1

r

@ Proof follows similarly.

Gugercin Interpolatory methods for model reduction
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How to construct interpolants with d, # d

@ H(s)=c'SE—A)"'b H,(s) = ¢! (sE, — A,)"'b, + d,

Theorem ([Beattie/G.,09] [Mayo/Antoulas,07])
Given {p;}i_y U{oj}i_,, letV, € C"™*" and W, € C"*" be as before. Let

e=[1 1 - l]T. For any d, € C, define

E.(s) = W/EV,, A, =W’AV, }d.ee’,
b, =W!b —de, and ¢, = Viec, —de.

Then with ~ F(.(s) = ¢! (sE, — A,)"'b, + d,, we have

H(o)) = H,(0;) and () = I (;) fori=1, ..., r.

@ d, can be chosen to meet certain requirements.
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H20pt H2space H2cond IRKA ConfRoom Flow

‘H, Space: The SISO Case

@ 7,: Set of scalar-valued functions, 3(z), with components that
are analytic for z in the open right half plane, Re(z) > 0, such that

oo
Sup/ | H(x +2y) > dy < o0.
x>0 00

@ H, is a Hilbert space and transfer functions associated with stable
finite dimensional dynamical systems are elements of H,.

@ For stable G(s) and H(s):

(G, @ ] / G( w:i /_ O; G (—10) H (1) dw

@ with a norm defined as

G, = /(G Gy, & (1 [ ieur dw)]/z.

21 J_ o
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H20pt H2space H2cond IRKA ConfRoom Flow

@ For simplicity, we assume 3, (s) has simple poles; the theory
applies to the general case.

@ Pole-residue expansion of HH,(s) of dimension-r:

Gi
S—)\,"

H,.(s) =cl(sE, —A,)"'b, = Z
i=1

where )\ e€C_, ¢;€C fori=1,...,r.

@ Note that

1 1 1
g-cr ) 3ty
(s)ESpan{s_)\l s— X s—)\r}

Gugercin Interpolatory methods for model reduction



H20pt H2space H2cond IRKA ConfRoom Flow

Lemma (G./Antoulas/Beattie [2008])

r

Suppose that G(s) and H(s) = fi 3 are real, stable and suppose

that 3 (s) has simple poles at 51 52, ... &. Then

. 12
(G, H)n ZSOkG —&) and |||y, = (Zs@zﬁﬂ—&)) :
k=1

k=1

@ Proof: Application of the Residue Theorem:
1 & . 1
(G, 34y, = ) G(—w)H(w) dw = nggo - /FR G(—s)H(s) ds
where

I'r ={zlz=wwithw € [-R,R] } U {Z

. 3
z=Re" with§ e [g,;]}.

Gugercin Interpolatory methods for model reduction



H20pt H2space H2cond IRKA ConfRoom Flow

Pole-residue based H, error expression

Theorem
Given a full-order real system, H(s) and a reduced model, 3, (s),

having the form J(,(s) = Z . (_z)i 3 the H, norm of the error system is
=i i
given by
i 2 - —~ iy
19€ = 3|13, = 11315, — 2 SF(=M) + Y I
k=1 k=1

@ SISO Case: [Krajewski et al.,1995], [G./Antoulas,2003]

@ MIMO Case: [Beattie/G.,2008],

@ Can be used in developing descent-type H, optimal model
reduction algorithms [Beattie/G.,2009]
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H20pt H2space H2cond IRKA ConfRoom Flow

Optimal #, approximation

Problem

Given H(s), find 3, (s) of order r which solves: ; m(lél) 13 — Gyl -
egree(G,)=r

@ The goal is to minimize max ly(t) — y+(7)||oc for all possible unit
>

energy inputs.

@ Non-convex optimization problem. Finding a global minimum is, at
best, a formidable task.

@ [Wilson,1970], [Hyland/Bernstein,1985]: Sylvester-equation based optimality
conditions

@ Wwilson [1970]: Solution is obtained by projection. But, is it an
interpolatory projection?

Gugercin Interpolatory methods for model reduction



H20pt H2space H2cond IRKA ConfRoom Flow

@ Pole-residue expansion of 3, (s) of dimension-r:

i
S—)\,‘

H,(s) = ¢ (sE, — A,) " 'b, = = h() =) ¢
i=1 i=1

where
ANeEC. and ¢;eC for i=1,...,r.

@ For simplicity, we assume 3, (s) has simple poles; the theory
applies to the general case.

Gugercin Interpolatory methods for model reduction
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@ Pole-residue expansion of 3, (s) of dimension-r:

i
S—)\,‘

H,(s) = ¢ (sE, — A,) " 'b, = = h() =) ¢
i=1 i=1

where
ANeEC. and ¢;eC for i=1,...,r.

@ For simplicity, we assume 3, (s) has simple poles; the theory
applies to the general case.

@ So, where is the interpolation connection?

Gugercin Interpolatory methods for model reduction
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Searching for the optimal interpolation point

@ Vary o from o = 0to o = 1 and measure the #, error:

H, error vs the interpolation point
0.18 T T T T T

0.16

r

ITH-H_ Il
o
2

0.12

0.1 ! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
o
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Searching for the optimal interpolation point

@ Vary o from o = 0to o = 1 and measure the #, error:

H, error vs the interpolation point
0.18 T T T T T

0.16 -

\ /°p

! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r

ITH-H_ Il
o
2

IS
)

0.1

@ Compute the reduced model for o,,, = 0.4574, i.e.,
V,=(0ppE—A)"'b and W, = (o,,E—A) e

Gugercin Interpolatory methods for model reduction



H20pt H2space H2cond IRKA ConfRoom Flow

Searching for the optimal interpolation point

@ Vary o from o = 0to o = 1 and measure the #, error:

H, error vs the interpolation point
0.18 T T T T T

0.16 -

\ /°p

! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r

ITH-H_ Il
o
2

IS
)

0.1

@ Compute the reduced model for o,,, = 0.4574, i.e.,
V,=(0ppE—A)"'b and W, = (o,,E—A) e

0.2554
g_c}(ﬁopt) (S) — m — h,(,OPI)(t) = 0.2554 e—0.4574t
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H20pt H2space H2cond IRKA ConfRoom Flow

Interpolatory #, optimality conditions

Theorem ([Meier /Luenberger,67], [G./Antoulas/Beattie,08])

r

Given H(s), let H,(s) = Z : 5 be the best r'™ order rational

— 5 — i
i=1
approximation of H(s) with respect to the H, norm. Then,

j‘C(—)\k) = fJ-Cr(—)\k) and }C/(—Ak) = f}a,(—)\k) fork = 1,2, .., r.

@ Hermite interpolation for H, optimality

o ‘Optimal interpolation points : g; = —J\;

@ H(—X) = H,.(—\) necessary and sufficient if A, are fixed.

Gugercin Interpolatory methods for model reduction



H20pt H2space H2cond IRKA ConfRoom Flow

Proof:

d ~ Ho
© T =335, = 3¢, — 23" (- M) + 30 K
k=1 k=1

@ Set the gradient to zero:

oJ . Ny
a¢i - Z(J{r(_Az) - %(_Az)) =0
8j _ . / ) W _
T, = 20 (=X) = 3C(=A) =0
@ Another interpretation
(90, 1) =0 = H(N) =F(N)
1 / ! .
<:}£—:}{,,m> =0 = H(=A) =3 (-N)

@ )\, ¢; are NOT known a priori =—> Need iterative steps

Gugercin Interpolatory methods for model reduction



H20pt H2space H2cond IRKA ConfRoom Flow

An lterative Rational Krylov Algorithm (IRKA):

Algorithm (G./Antoulas/Beattie [2008])
@ Choose {o4,...,0,}
Q V., =[(ciE-A)"'b, (mE—A)"'b, -+, (c;E—A)"'b]
W, =[(a1E" —A") "¢, (2 E" —A")7'¢, -+, (0, ET —A")7'c].

@ while (not converged)
Q@ A =W AV, E, =W'EV,
Q@ o +— —\(ALE).
© V,=[(iE—A)"'b, (mE—A)"'b, -+, (0;E—A)"'b ]
W, = [(o1 E" —A")" e, (0, ET —AT) e, -+, (0, ET — AT)_lc].

Q A =W AV, E, =W'EV,, b, =W, b, ¢, =V, ¢, and d, = d.

@ Locally optimal reduced model upon convergence. Also,
V.(=A) —AV, =be’ and W,(—A)—A"W, = ce’

Gugercin Interpolatory methods for model reduction



H20pt H2space H2cond IRKA ConfRoom Flow

@ In its simplest form, IRKA is a fixed point iteration. Guaranteed
convergence for state-space symmetric systems [Flagg/Beattie/G.,2012]

@ Newton formulation is possible [G./Antoulas/Beattie,08]
@ Globally convergent descent [Beattie/G.,2009]
@ Extensions

e Structure-preservation (such as port-Hamiltonian structure):
[G./Polygua/Beattie/vanderSchaft,2012], [Wyatt, 2012]

o Data-driven implementation: [Beattie/G.,2012]

o Extensions to H., model reduction: [Flagg, Beattie/G.,2013]

@ Nonlinear Systems: [Benner/Breiten,2012], [Flagg/G., 2014],
[Benner/Goyal/G./,2017]

o Projected nonlinear LS framework: [Hokanson/Magruder, 2018]

@ Implementation with iterative solves:

@ [Ahuja/deSturler/G./Chang, 2012], [Beattie/G./Wyatt, 2012],
[Ahmad/Szyld/van Gijzen, 2017]
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H20pt H2space H2cond IRKA ConfRoom

Small example:

® (s 25 4 11.55% + 57.75s* + 178.625s% + 345.5s% + 323.625s + 94.5
§S) =
s7 4 10s® + 4655 + 130s* + 23953 + 280s2 + 1945 + 60

2.15552 + 3.343s + 33.8

@ 3" (s) =
3 (s + 6.2217)(s + 0.61774 + 71.5628)(s + 0.61774 + 1.5628)

Relative error vs number of iterations
T T T

T T
—— Initial shifts: —1.01, —2.01, 30000
—— Initial shifts: 1, 10, 3

Initial Shitfs: 0, 10, 3
—%—_Initial Shitfs: 0.01, 20, 10000

Relative Error

4
k: Number of iterations
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H20pt H2space H2cond IRKA ConfRoom Flow

Fixed point vs Newton framework

_ —s% 4+ (7/4)s + (5/4) I, (s) = 0.97197
S 2 4 (17/16)s+ (15/32)” TP 54027272
oA

~ 1.3728 > 1
o

@ H(s)

Convergence history of IRKA
T T T T T

5
€.
S
I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100
IRKA iteration index
Ci history of the IRKA Newton for
10 T T T T
10!
£~
S
10°
107 I I I I I I
1 2 3 5 6 7 8

4
IRKA-Newton iteration index
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H20pt H2space H2cond |IRKA ConfRoom Flow

Indoor-air environment in a conference room

Ex(r) = Ax(t) + Bu(zr), y(r) = Cx(s),

@ Example from [Borggaard/Cliff/G., 2011],
@ Recall n =202140, m=2andp =2
@ Reduced the order to r = 30 using IRKA.
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H20pt H2space H2cond |IRKA ConfRoom Flow

@ Relative errors in the subsystems by IRKA

From Input [1] | From Input [2]
To Output [1] | 6.62 x 1073 1.82 x 107>
To Output [2] | 4.86 x 10~* 5.40 x 1077

@ Does IRKA pay off? How about some ad hoc selections:

| From Input [1] | From Input [2]
To Output [1] | 9.19x 1072 [ 838 x 10~
To Output[2] [ 5.90x 107% | 2.22x 107~

@ One can keep trying different ad hoc selections but this is exactly
what we want to avoid.

Gugercin Interpolatory methods for model reduction



>onfRoom  Flow

Wake Stabilization by Cyhnder Rotatlon

@ Joint work with Jeff Borggaard (Virginia Tech)

Gugercin Interpolatory methods for model reduction



H20pt H2space H2cond IRKA ConfRoom Flow

Wake Stabilization by Cylinder Rotation

Figure: Steady-State Velocity Components at Re; = 60

Use linear feedback control to stabilize the wake behind two circular
cylinders using cylinder rotation .

@ [Tokumaru/Dimotakis,91], [Blackburn/Henderson,99], [Bergmann et al.,00],
[Afanasiev/Hinze, 99], [Noack et al.,03], [Stoyanov, 09], [Benner/Heiland,14], ...
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H20pt H2space H2cond IRKA ConfRoom Flow

Optimal control problem

@ Linearize the Navier-Stokes equations around the steady-state

Ex(t) = Ax(t) +Bu(r), y(r) = Cx(r)
@ The LQR problem becomes: Find a control u(-) that solves

min [ {7030 + alulP(0)} ar,

u

subjectto  Ex(f) = Ax(r) +Bu(r), y(r) = Cx(z)
@ Instead, reduce the dimension first. Solve

u

win [ {3t 0w+ alulPo)} ar,
0
subjectto  E,x.(t) = A, x,(t) + B, u(?), y. (1) = C,x.(¢)
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H20pt

Model Reduction for the Two-cylinder Case

@ n = 126150. We reduce the order to r = 140.

Aunsiavle (FC(8)) © 3.973912561638801 x 102 +17.498560362688469 x 10!
Aunstable (FC-(5))  3.973912526082657 x 102 + 1,7.498560367601876 x 10~

@ Solve the reduced LQR problem and compute the functional gains:

Figure: Horizontal (left) and Vertical (right) Components
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H20pt H2space H2cond IRKA ConfRoom Flow

Re = 60 Case: Open Loop Simulation

pov R RN
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H20pt H2space H2cond IRKA ConfRoom Flow

Re = 60 Case: Closed Loop from ¢ = 100
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H2space H2cond IRKA ConfRoom Flow

H20pt

Descent-based version: Gradient and Hessian

Theorem (Beattie./G [2009])
Let H(s) and I, (s) be given. Then, fori=1,...,r,

oJ
5o = 2 (LN = 3N
8\7 —_ . T ). T Y.
v 2¢; (F (=) — ' (=)
andfori,j=1,...,r,
*PT =2

96i0p; AN+ N’

»*J _ ) / ) / ) . 2¢;
ad)ia)\j - 72¢t (Hr(fAl) =3 (7)‘1)) 6lj + ()\i 4 Aj)z
>*rJ e R T . . 4di ¢;
oy (G2 =3 (=A0) 8 i+ X)?
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H20pt H2space H2cond IRKA ConfRoom Flow

H.. Model Reduction Problem

@ Find H,(s) = ¢,(sE, — A,)"'b, + d, that minimizes
[H =3, = sup [H(w) — FH (w)]
we

@ d, = 0 forces I, (oc0) = H(oo)—not optimal in the H., norm.
Theorem (Trefethen,81)

Suppose H(s) is a scalar-valued transfer function associated with a
SISO dynamical system. Let I?I,(s) be an optimal H, approximation to
H(s) and let H, be any r™ order stable approximation to H(s) that
interpolates H(s) at 2r + 1 points in the open right half-plane. Then

i |H(jw) — Hy(jw)| < |H = Hillnoo < |H = Hrll.e
w

In particular, if |H(jw) — H.(jw)| = const for allw € R then H, is itself an
optimal H . -approximation to G(s).

Gugercin Interpolatory methods for model reduction




H20pt H2space H2cond IRKA ConfRoom Flow

@ (2r+ 1) zeroes in C; and nearly circular error curve = nearly
optimal approximation

@ IRKA gives only 2r-zeroes in C..

@ Recall: Interpolatory projection may be generalized to allow
freedom in the d,-term parameter and still preserve interpolation
at the points {Ui}izél [Mayo/Antoulas,07, Beattie/G,08]

@ [Flagg/Beattie/G.,10]: Force interpolation at the 2r IRKA-points, and
compute real-valued d,-term that minimizes the H ., error: IHA
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H20pt H2space H2cond IRKA ConfRoom Flow

How to construct interpolants with d, # d

@ For optimal H, approximants, lgn H,.(s) # lgn H(s)

Theorem ([Beattie/G.,09] [Mayo/Antoulas,07])

Given {p;i}i—y U{oj}/_,, letV, € C"*" and W, € C"*" be as before. Let

e=[1,1,....1]T eRr”
For any d, € C, define

E.(s) = WIEV,, A,=W'AV, {4, eel,
b, =W!b —de, and ¢, =V'c—de.

Then with  3(,(s) = ¢! (sE, — A,)"'b, + d,, we have

g‘C(O‘,’) = g’fr(O'i) and ﬂ'C(,u,i) = U-Cr(,ui) fori = I, .. r.
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H20pt H2space H2cond IRKA ConfRoom Flow

Interpolatory ., Approximation

@ Based on [Flagg/Beattie/G., 2013].
@ Run IRKA to obtain H,(s) = ¢,(sE, — A,) " 'b,.

@ Define
Hi(s,d,) = (¢, — d,e")(sE, — (A, + d,ee’)) " (b, — d,e) + d,
@ Solve
o' = argdmin |3 — fJ-CfHHOO
@ The H., approximation via IHA is

H'(5) = (c] — d'e")(SE, — (A, +d?"ee”))" (b, — d"e) + "
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H20pt H2space H2cond IRKA ConfRoom Flow

PEEC Circuit: n = 1434, r =2

Nyquist plot of H(s)-H (s)
0.02 T T T T T T

—— HinfIRKA|

. . . . . . .
-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
Real(H (w))

Table: Relative H, error norms

r \ IHA BT HNA Lower Bound
2[445x107° 821x 1077 395x107° 3.72x107°
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H20pt

CD Player Model: n = 120

H2space H2cond IRKA ConfRoom Flow

Table: CD Player Model: Relative H, error norms

r IHA BT HNA Lower Bound
2 [3.66x107"7 3.68x1077 335x10°T 1.96x 107"
4 [ 214%x107%2 225x1072 200x10"2 1.13x 1072
6 | 1.04x1072 1.19x1072 1.23x107%2 6.82x 1073
8 | 485x107% 640x107° 599x107> 322x10°3
10 [ 899x10°% 124x1073 1.08x10% 588x10~*
Ho mnorm of the error system as d, varies
0.11
:? o1r Erxrm&ffction 777777777777777
:‘;‘0,097 \\\\ e .
io_os T Errg;?;;éi;clion J
0.07f
0.06
0905,06 —0.65 —0.(‘)4 —0.63 —0.62 —0.61 l; 0.61 0.02
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H20pt H2space H2cond IRKA ConfRoom Flow

Conclusions: Part |

@ Uses the concept of rational interpolation and transfer function

@ Optimal interpolation points in the H; norm

Gugercin Interpolatory methods for model reduction



H20pt H2space H2cond IRKA ConfRoom Flow

Conclusions: Part |

@ Uses the concept of rational interpolation and transfer function
@ Optimal interpolation points in the H; norm

@ Extension to parametrized systems (see Beattie’s talk on Feb 4)
E(p) X(1;p) = A(p)x(1;p) + b(p) u(t), y(1;p) = ¢’ (p)x(1;p), peC”
= H(s, p) = ¢/ (p) (sE(p) — A(p))~'b(p)
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H20pt H2space H2cond IRKA ConfRoom Flow

Conclusions: Part |

@ Uses the concept of rational interpolation and transfer function
@ Optimal interpolation points in the H; norm

@ Extension to parametrized systems (see Beattie’s talk on Feb 4)
E(p) X(1;p) = A(p)x(1;p) + b(p) u(t), y(1;p) = ¢’ (p)x(1;p), peC”
= H(s, p) = ¢/ (p) (sE(p) — A(p))~'b(p)

Construct 3,(s) = I (p) (sE,(p) — A-(p))~'b,(p) so that
0 d
H(ox, ;) = H,.(ox, 7)), ai}f(ak,wj) = af}fr(ak,wj),

Vpg{(dk, ﬂ'j) = fo}cr(dk, ﬂ'j)
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H20pt H2space H2cond IRKA ConfRoom Flow

Conclusions: Part |

@ Uses the concept of rational interpolation and transfer function
@ Optimal interpolation points in the H; norm

@ Extension to parametrized systems (see Beattie’s talk on Feb 4)
E(p) X(1;p) = A(p)x(1;p) + b(p) u(t), y(1;p) = ¢’ (p)x(1;p), peC”
= H(s, p) = ¢/ (p) (sE(p) — A(p))~'b(p)

Construct 3,(s) = I (p) (sE,(p) — A-(p))~'b,(p) so that
0 d
H(ox, ;) = H,.(ox, 7)), ai}f(ak,wj) = af}fr(ak,wj),

Vpg{(dk, ﬂ'j) = fo}cr(dk, ﬂ'j)
@ Structure preserving interpolation (see Beattie’s talk on Feb 4)
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DataDriven Data Collection

A more general problem setting

@ Consider the following example from [Antoulas,05]:

oT O°T
—_— = — >
at (Z’ t) 822 (Z7 t)’ t - 0) Z € [0) 1]

with the boundary conditions

oT or
E(O’t) =0 and 8—Z(l,t) = u(t)

@ u(r) is the input function (supplied heat)
@ y(tr) = T(0,1) is the output.

@ Transfer function:  H(s) = Y(s) _ 1

U(s) +/ssinhy/s

c'(sSE—-A)"'b



DataDriven Data Collection

@ Do not assume the generic first-order structure.

@ Only assume the ability to evaluate J(s) (and 3'(s)) at s € C.

@ For example:
1
] f}((s) = m

e H(s) = (sC; + Co)(s’M +sD + K)~'B

@ Given the samples {H(s1), H(s2), ..., H(sn)}; construct:

?| Ex=Ax()+Bau)

~

ASON [od I S
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DataDriven Data Collection

@ Do not assume the generic first-order structure.

@ Only assume the ability to evaluate J(s) (and 3'(s)) at s € C.

@ For example:
1
] H'C(S) = m

e H(s) = (sC; + Co)(s’M +sD + K)~'B

@ Given the samples {H(s1), H(s2), ..., H(sn)}; construct:

70) I 7|1 Ex=Ax()+Bu()

~ yr(t) = Crx(2)

How to obtain the data {H(s;), H(s2),...,H(sn)}?

Gugercin Interpolatory methods for model reduction



DataDriven Data Collection

3D Laser Vibrometer (VAST LAB, Virginia Tech)

\ ¥ 1° & riytee

_SCANNING VIBROMETER

S
Ky
E
(]
j=2)
et
3
2
]
2
S
[+
=

20 25 30 35 40 45 50
Frequency (kHz)

@ [Malladi/Albakri/Krishnan/G./Tarazaga, 2019]
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DataDriven Data Collection

Main Ingredients: vayo/antoulas (2007)

@ The Loewner matrix:

LU:M7 ij=1,....r, (H(s))
i — 0O

@ The shifted Loewner matrix:

iH (i) — H(oj)o; . .
my = PP =IOy sy ()

,u,'—O'j

@ In addition to I. and M, construct the following matrices from data:

H(pu) H(a1)
z= : q= :

H(n,) (o)
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DataDriven Data Collection

Data-Driven Interpolant

Theorem (Mayo/Antoulas,2007)

Assume that u; # oj foralli, j=1, ..., r. Suppose that M — sLL is
invertible for all s € {o;} U {u;}. Then, with

Er = _L7 Ar = _M7 br = Z7 ¢ = qJ
the rational function (reduced model)
H,(s) =c (sE, —A,) " 'b,=q' (M —sL)"'z

interpolates the data and furthermore is a minimal realization.

@ For Hermite interpolation, choose o; = y; and only modify

L; = f}'cl(O'i) and M = [S&C(S)]/

s=0;
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DataDriven Data Collection

Sketch of the proof

@ Assume H(s) = ¢/ (sE — A)~'b (not necessary).
© H(w) — H(0) = (07 — i) ' (wE — A)""E(o;E — A)~'b.

— L=-W'EV,

© 11 () — 0;H(a7) = (0 — i) " (uE — A)~'A(;E — A)~'b.

— M = —W/AV,

@ Also z=W/b and q=Vle, by definition.
= K, (s) =9’ (M —sL)"'zis an interpolant to J(s).
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DataDriven Data Collection

Recall interpolatory #, optimality conditions

Theorem ([Meier /Luenberger,67], [G./Antoulas/Beattie,08])

Given J(s), let 3, (s) be the best stable r™ order approximation of I
gvithArespecAt to the H, norm. Assume 3, (s) has simple poles at
ALy A2y ol Ap Then

(=) = H(=X) and  H'(=\) =FH(=N) fork=1,2, .., r.

@ Hermite interpolation for H, optimality

~

° Optimal interpolation points : g; = —X\;

@ Does NOT require H(s) to be a rational function.

@ In IRKA, replace the projection framework by the Loewner
framework.

Gugercin Interpolatory methods for model reduction



DataDriven Data Collection

Recall IRKA

Algorithm (G./Antoulas/Beattie [2008])

@ Choose {0y, ...,0.}
Q@ V., =[(E-A)""'b, -+, (;E—A)"'b]
W, =[(E" —A") 7', o (o, ET = AT) 7" ].
© while (not converged)
Q@ A, =W'AV,E, = WEV,
@ o, +— —)\(A,E,). (Reflectthe current poles)
@ V,=[(ciE=A)"'b, -+, (;E—A)"'b]
O W,=[(E"=A")"'" - (0, ET —AT) 1T ]

QO A =W/AV, E, =W'EV,, b, = W'b, andc, = V'¢c, D, = D.

@ lteratively corrected rational Hermite interpolants

Gugercin Interpolatory methods for model reduction



DataDriven Data Collection

Realization Independent IRKA: TF-IRKA

@ Drop the need for H(s) = ¢’ (sE — A)"'b
@ Only assume the ability to evaluate J(s) and 3'(s)

Algorithm (Realization Independent IRKA  [Beattie/G., (2012)])

@ Choose initial {o;} fori=1,...,r.

@ while not converged

Q@ Evaluate H(o;) and ' (o;) fori=1,...,r.

@ ConstructE, = —L,A, = —-M, b, =z andc, =q
@ Construct I, (s) = ¢ (sE, — A,)"'b,

Q o+ —NALE,)fori=1,...,r

© Construct H,(s) = ¢! (sE, — A,)"'b, =q' (M - sL) "'z

@ Allows infinite order transfer functions !!
e.g., H(s) = C(sE — Ag — e " A — e ™Ay)"'B
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DataDriven Data Collection

Revisit: One-dimensional heat equation

2
° Z(Z,t) = g;(z,t), Z(OJ) =0,g:<1,t) =u(), y() =T(0.1)

o H(s) = W

@ Apply TF-IRKA.  Cost: Evaluate 3(s) and 3'(s) !!!

@ Optimal points upon convergence: o; = 20.9418, 0, = 10.8944.
—0.94695 —37.84 1

T 13184512281 s

. (s)

@ 13— I |, =584 x 1072, [|F€ — ||, ~9.61 x 107*
@ Balanced truncation of the discretized model:
o n=1000: || F€ — F,||lsg, = 5.91 x 1073, ||F€ — F, ||, ~ 1.01 x 1073
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DataDriven Data Collection

Delay Example

@ Ex(r) = Aix(r) + Ayx(r — 7) + bu(r), y(r) =<’ x(r). n=1000.
@ H(s) =c'(SE— A — e Ay)"'b.
@ I (s) = —c"(SE—A; —e ™Ay) " H(E+71e AL (SE — A; — e T*Ay) " 'b.

@ Obtain an order r = 20 optimal #, rational approximation directly
using H(s) and H'(s)

@ I, (s) exactly interpolates JH(s). This will not be the case if e "* is
approximated by a rational function.

@ Moreover, the rational approximation of e~ increases the order
drastically.
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DataDriven Data Collection

Delay Example

Amplitude Bode Plots

T T T

Original
- --H2
Pade

10 I I I

1 0 1 2 3

10~ 10 10 10 10
freq (rad/sec)

@ Relative errors: TF-IRKA: 8.63 x 10>  Pade approx: 5.40 x 10~!

@ Pade Model has dimension N = 3000 !!!

@ [Pontes Duff et al, 2015], [Pontes Duff et al, 2015]: Optimality for special delay
systems.
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DataDriven Data Collection

An example on data-driven parametric modeling

@ A parametrized (transfer) function/mapping: H(s,p):
{j{(slapl)aj{(slvp2)a'”aj—c(sNapM)} = :}cr(s)p) %:}C(S,p)

@ What form of 3, (s, p) to choose:

k g
o o
H,(s,p) = —U SR E—
br =221 22 5o
® H(si,pj) = H,(si,pj) for i=1,...;k and j=1,...,9

@ pAAA: Pick «;; to minimize a LS error in the rest of the data
([Carracedo Rodriguez/G.,201 9])

@ Parametric-Loewner (full interpolation): [Lefteriu/Antoulas, 2013] and
[lonita/Antoulas, 2014]
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DataDriven Data Collection

A parametrized stationary PDE ((Chen/uiang/Narayan, 19])

@ vy +pvy+sv=10sin(8(y—1)) on Q=[-1,1] x[-1,1]
with homogeneous Dirichlet boundary conditions.

@ N =M =20 linearly spaced samples in [0.1,4] x [0, 2].

@ pAAAresults in (k,q) = (3,3). ([Carracedo Rodriguez/G.,2019])

Original Approximation

Gugercin Interpolatory methods for model reduction



DataDriven Data Collection

A parametrized stationary PDE ((Chen/uiang/Narayan, 19])

0 (1+px)vu+ (1 +syvy=e" onQ=[-1,1] x[~1,1]
with homogeneous Dirichlet boundary conditions.

@ N =M =20 linear samples in [—0.99,0.99] x [—0.99,0.99].

@ pAAAresults in (k,q) = (14,8). ([Carracedo Rodriguez/G.,2019])

Approximation

/17
T
i
N
1w
I

=

2

Z7 7
=

27
o,

==
e

uexy)
ueey)
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Conclusions - Part 1
Conclusions

@ Interpolatory model reduction is good for you !!!

@ A powerful framework for model reduction.

@ Can create locally optimal reduced models effectively.
@ Extended to parametrized systems.

@ Data-driven formulation

@ Extended to bilinear and quadratic-in-state systems.
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